Circle MCQ Questions & Answers in Geometry | Maths
Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
101.
The equation of the locus of the middle point of a chord of the circle $${x^2} + {y^2} = 2\left( {x + y} \right)$$ such that the pair of lines joining the origin to the point of intersection of the chord and the circle are equally inclined to the $$x$$-axis is :
A
$$x + y = 2$$
B
$$x - y = 2$$
C
$$2x - y = 1$$
D
none of these
Answer :
$$x + y = 2$$
Solving $$y = mx$$ and $${x^2} + {y^2} - 2x - 2y = 0,$$ we get
$$\eqalign{
& {x^2} + {m^2}{x^2} - 2x - 2mx = 0 \cr
& \Rightarrow \,x = 0,\,\frac{{2\left( {1 + m} \right)}}{{1 + {m^2}}} \cr} $$
Similarly, solving $$y = - mx$$ and the equation of the circle, we get
$$\eqalign{
& x = 0,\,\frac{{2\left( {1 - m} \right)}}{{1 + {m^2}}} \cr
& \therefore \,A = \left( {\frac{{2\left( {1 + m} \right)}}{{1 + {m^2}}},\,\frac{{2m\left( {1 + m} \right)}}{{1 + {m^2}}}} \right)\,{\text{and }}B = \left( {\frac{{2\left( {1 - m} \right)}}{{1 + {m^2}}},\,\frac{{ - 2m\left( {1 - m} \right)}}{{1 + {m^2}}}} \right) \cr} $$
Let the middle point of $$AB$$ be $$\left( {\alpha ,\,\beta } \right).$$ Then
$$\eqalign{
& \alpha = \frac{1}{2}\left( {\frac{{2\left( {1 + m} \right)}}{{1 + {m^2}}} + \frac{{2\left( {1 - m} \right)}}{{1 + {m^2}}}} \right){\text{ and }}\beta = \frac{1}{2}\left( {\frac{{2m\left( {1 + m} \right)}}{{1 + {m^2}}} + \frac{{ - 2m\left( {1 - m} \right)}}{{1 + {m^2}}}} \right) \cr
& \therefore \,\,\alpha = \frac{2}{{1 + {m^2}}},\,\beta = \frac{{2{m^2}}}{{1 + {m^2}}} \cr} $$
Eliminating m from these, $$\alpha + \beta = 2.$$
102.
The point diametrically opposite to the point $$P\left( {1,\,0} \right)$$ on the circle $${x^2} + {y^2} + 2x + 4y - 3 = 0$$ is-
A
$$\left( {3,\, - 4} \right)$$
B
$$\left( { - 3,\,4} \right)$$
C
$$\left( { - 3,\, - 4} \right)$$
D
$$\left( {3,\,4} \right)$$
Answer :
$$\left( { - 3,\, - 4} \right)$$
The given circle is $${x^2} + {y^2} + 2x + 4y - 3 = 0$$
Centre $$\left( { - 1,\, - 2} \right)$$
Let $$Q\left( {\alpha ,\,\beta } \right)$$ be the point diametrically opposite to the point $$P\left( {1,\,0} \right),$$
then $$\frac{{1 + \alpha }}{2} = - 1{\text{ and }}\frac{{0 + \beta }}{2} = - 2$$
$$ \Rightarrow \alpha = - 3,\,\,\beta = - 4,\,\,\,{\text{So }}Q\,\,{\text{is}}\left( { - 3,\, - 4} \right)$$
103.
The equation of the circle which touches the axes at a distance $$5$$ from the origin is $${y^2} + {x^2} - 2\alpha x - 2\alpha y + {\alpha ^2} = 0.$$ What is the value of $$\alpha \,?$$
A
$$4$$
B
$$5$$
C
$$6$$
D
$$7$$
Answer :
$$5$$
Coordinates of the centre of given circle $$ = \left( {\alpha ,\,\alpha } \right)$$
and radius $$ = \sqrt {{{\left( \alpha \right)}^2} + {{\left( \alpha \right)}^2} - {\alpha ^2}} = \sqrt {{\alpha ^2}} = \alpha $$
$$\eqalign{
& \therefore \,{\left( {\alpha - 5} \right)^2} + {\left( \alpha \right)^2} = {\left( \alpha \right)^2} \cr
& \Rightarrow {\alpha ^2} + 25 - 10\alpha = 0 \cr
& \Rightarrow {\left( {\alpha - 5} \right)^2} = 0 \cr
& \Rightarrow \alpha = 5 \cr} $$
Then, other root will always real.
104.
The number of common tangents to the circles $${x^2} + {y^2} - 4x - 6y - 12 = 0$$ and $${x^2} + {y^2} + 6x + 18y + 26 = 0$$ is :
$$\eqalign{
& {\text{Here, }}{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 0 \cr
& \Rightarrow x = 1,\,y = - 2,\,{\text{which give a point}}{\text{.}} \cr} $$
106.
The locus of a point from which the lengths of the tangents to the circles $${x^2} + {y^2} = 4$$ and $$2\left( {{x^2} + {y^2}} \right) - 10x + 3y - 2 = 0$$ are equal is :
A
a straight line inclined at $$\frac{\pi }{4}$$ with the line joining the centres of the circles
B
a circle
C
an ellipse
D
a straight line perpendicular to the line joining the centres of the circles
Answer :
a straight line perpendicular to the line joining the centres of the circles
The locus is the radical axis which is perpendicular to the line joining the centres of the circles.
107.
Let $$f\left( {x,\,y} \right) = 0$$ be the equation of a circle. If $$f\left( {0,\,\lambda } \right) = 0$$ has equal roots $$\lambda = 2,\,2,$$ and $$f\left( {\lambda ,\,0} \right) = 0$$ has roots $$\lambda = \frac{4}{5},\,5$$ then the centre of the circle is :
The circle is $${\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = {3^2}.$$ As any tangent to $${x^2} + {y^2} = {3^2}$$ is given by $$y = mx + 3\sqrt {1 + {m^2}} ,$$ any tangent to the given circle will be $$y + 2 = m\left( {x - 1} \right) + 3\sqrt {1 + {m^2}} .$$
109.
If the circles $${x^2} + {y^2} + 2x + 2ky + 6 = 0,\,\,{x^2} + {y^2} + 2ky + k = 0$$ intersect orthogonally, then $$k$$ is-
A
$$2\,\,{\text{or }} - \frac{3}{2}$$
B
$$ - 2\,\,{\text{or }} - \frac{3}{2}$$
C
$$2\,\,{\text{or }}\frac{3}{2}$$
D
$$ - 2\,\,{\text{or }}\frac{3}{2}$$
Answer :
$$2\,\,{\text{or }} - \frac{3}{2}$$
$$2{g_1}{g_2} + 2{f_1}{f_2} = {c_1} + {c_2}$$ (formula for orthogonal intersection of two cricles)
$$\eqalign{
& \Rightarrow 2(1)(0) + 2(k)(k) = 6 + k \cr
& \Rightarrow 2{k^2} - k - 6 = 0 \cr
& \Rightarrow k = - \frac{3}{2},\,\,2\, \cr} $$
110.
The locus of the centres of circles passing through the origin and intersecting the fixed circle $${x^2} + {y^2} - 5x + 3y - 1 = 0$$ orthogonally is :
A
a straight line of the slope $$\frac{3}{5}$$
B
a circle
C
a pair of straight lines
D
none of these
Answer :
none of these
Let the circle be $${x^2} + {y^2} + 2gx + 2fy = 0.$$ It cuts the other circle orthogonally if $$2g\left( { - \frac{5}{2}} \right) + 2f.\frac{3}{2} = 0 + \left( { - 1} \right),$$ i.e., $$5\left( { - g} \right) - 3\left( { - f} \right) + 1 = 0.$$
Hence, the locus of the centre $$\left( { - g,\, - f} \right)$$ is $$5x - 3y + 1 = 0.$$