Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

121. The equation of the smallest circle passing through the intersection of the line $$x + y = 1$$   and the circle $${x^2} + {y^2} = 9$$   is :

A $${x^2} + {y^2} + x + y - 8 = 0$$
B $${x^2} + {y^2} - x - y - 8 = 0$$
C $${x^2} + {y^2} - x + y - 8 = 0$$
D none of these
Answer :   $${x^2} + {y^2} - x - y - 8 = 0$$

122. The equation of the circle of radius $$2\sqrt 2 $$  whose centre lies on the line $$x - y = 0$$   and which touches the line $$x + y = 4,$$   and whose centre’s coordinates satisfy the inequality $$x + y > 4$$   is :

A $${x^2} + {y^2} - 8x - 8y + 24 = 0$$
B $${x^2} + {y^2} = 8$$
C $${x^2} + {y^2} - 8x + 8y = 24$$
D none of these
Answer :   $${x^2} + {y^2} - 8x - 8y + 24 = 0$$

123. The equations of two circles are $${x^2} + {y^2} + 2\lambda x + 5 = 0$$     and $${x^2} + {y^2} + 2\lambda y + 5 = 0.\,P$$      is any point on the line $$x - y = 0. $$   If $$PA$$  and $$PB$$  are the lengths of the tangents from $$P$$ to the two circles and $$PA = 3$$  then $$PB$$  is equal to :

A $$1.5$$
B $$6$$
C $$3$$
D none of these
Answer :   $$3$$

124. The common chord of $${x^2} + {y^2} - 4x - 4y = 0$$     and $${x^2} + {y^2} = 16$$   subtends at the origin an angle equal to :

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{2}$$

125. If the pair of lines $$a{x^2} + 2\left( {a + b} \right)xy + b{y^2} = 0$$       lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then :

A $$3{a^2} - 10ab + 3{b^2} = 0$$
B $$3{a^2} - 2ab + 3{b^2} = 0$$
C $$3{a^2} + 10ab + 3{b^2} = 0$$
D $$3{a^2} + 2ab + 3{b^2} = 0$$
Answer :   $$3{a^2} + 2ab + 3{b^2} = 0$$

126. Two circles, each of radius 5, have a common tangent at (1, 1) whose equation is $$3x+4y-7=0.$$    Then their centers are :

A $$\left( {4,\, - 5} \right),\,\left( { - 2,\,3} \right)$$
B $$\left( {4,\, - 3} \right),\,\left( { - 2,\,5} \right)$$
C $$\left( {4,\,5} \right),\,\left( { - 2,\, - 3} \right)$$
D none of these
Answer :   $$\left( {4,\,5} \right),\,\left( { - 2,\, - 3} \right)$$

127. The length of the chord intercepted by the circle $${x^2} + {y^2} = {r^2}$$   on the line $$\frac{x}{a} + \frac{y}{b} = 1$$   is :

A $$\sqrt {\frac{{{r^2}\left( {{a^2} + {b^2}} \right) - {a^2}{b^2}}}{{{a^2} + {b^2}}}} $$
B $$2\sqrt {\frac{{{r^2}\left( {{a^2} + {b^2}} \right) - {a^2}{b^2}}}{{{a^2} + {b^2}}}} $$
C $$2\frac{{\sqrt {{r^2}\left( {{a^2} + {b^2}} \right) - {a^2}{b^2}} }}{{{a^2} + {b^2}}}$$
D None of these
Answer :   $$2\sqrt {\frac{{{r^2}\left( {{a^2} + {b^2}} \right) - {a^2}{b^2}}}{{{a^2} + {b^2}}}} $$

128. The range of values of $$m$$ for which the line $$y = mx + 2$$   cuts the circle $${x^2} + {y^2} = 1$$   at distinct or coincident points is :

A $$\left( { - \infty ,\, - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ,\, + \infty } \right)$$
B $$\left[ { - \sqrt 3 ,\,\sqrt 3 } \right]$$
C $$\left[ {\sqrt 3 ,\, + \infty } \right)$$
D none of these
Answer :   $$\left( { - \infty ,\, - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ,\, + \infty } \right)$$

129. The length of the diameter of the circle which touches the $$x$$-axis at the point $$\left( {1,\,0} \right)$$  and passes through the point $$\left( {2,\,3} \right)$$  is:

A $$\frac{{10}}{3}$$
B $$\frac{3}{5}$$
C $$\frac{6}{5}$$
D $$\frac{5}{3}$$
Answer :   $$\frac{{10}}{3}$$

130. The circle passing through $$\left( {1,\, - 2} \right)$$  and touching the axis of $$x$$ at $$\left( {3,\,0} \right)$$  also passes through the point -

A $$\left( {- 5,\, 2} \right)$$
B $$\left( {2,\, - 5} \right)$$
C $$\left( {5,\, - 2} \right)$$
D $$\left( {- 2,\, 5} \right)$$
Answer :   $$\left( {5,\, - 2} \right)$$