Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

31. The limiting points of the coaxial system determined by the circles $${x^2} + {y^2} - 2x - 6y + 9 = 0$$      and $${x^2} + {y^2} + 6x - 2y + 1 = 0$$

A $$\left( { - 1,\,2} \right),\,\left( {\frac{3}{5},\,\frac{{ - 14}}{5}} \right)$$
B $$\left( { - 1,\,2} \right),\,\left( {\frac{3}{5},\,\frac{{14}}{5}} \right)$$
C $$\left( { - 1,\,2} \right),\,\left( {\frac{{ - 3}}{5},\,\frac{{14}}{5}} \right)$$
D None of these
Answer :   $$\left( { - 1,\,2} \right),\,\left( {\frac{3}{5},\,\frac{{14}}{5}} \right)$$

32. An equilateral triangle is inscribed in the circle $${x^2} + {y^2} = {a^2}$$   with one of the vertices at $$\left( {a,\,0} \right).$$  What is the equation of the side opposite to this vertex ?

A $$2x - a = 0$$
B $$x + a = 0$$
C $$2x + a = 0$$
D $$3x - 2a = 0$$
Answer :   $$2x + a = 0$$

33. If a circle passes through the point $$\left( {a,\,b} \right)$$  and cuts the circle $${x^2} + {y^2} = {k^2}$$    orthogonally, then the equation of the locus of its centre is-

A $$2ax + 2by - \left( {{a^2} + {b^2} + {k^2}} \right) = 0$$
B $$2ax + 2by - \left( {{a^2} - {b^2} + {k^2}} \right) = 0$$
C $${x^2} + {y^2} - 3ax - 4by + \left( {{a^2} + {b^2} - {k^2}} \right) = 0$$
D $${x^2} + {y^2} - 2ax - 3by + \left( {{a^2} - {b^2} - {k^2}} \right) = 0$$
Answer :   $$2ax + 2by - \left( {{a^2} + {b^2} + {k^2}} \right) = 0$$

34. The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D none of these
Answer :   $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$

35. For each $$k\, \in \,N,$$  let $${C_k}$$ denote the circle whose equation is $${x^2} + {y^2} = {k^2}.$$   On the circle $${C_k},$$ a particle moves $$k$$ units in the anticlockwise direction. After completing its motion on $${C_k}$$ the particle moves to $${C_{k + 1}}$$ in the radial direction. The motion of the particle continues in this manner. The particle starts at $$\left( {1,\,0} \right).$$  If the particle crosses the positive direction of the $$x$$-axis for the first time on the circle $${C_n}$$ then $$n$$ is :

A $$7$$
B $$6$$
C $$2$$
D none of these
Answer :   $$7$$

36. Tangents drawn from the point $$P\left( {1,\,8} \right)$$   to the circle $${x^2} + {y^2} - 6x - 4y - 11 = 0$$      touch the circle at the points $$A$$ and $$B.$$  The equation of the circumcircle of the triangle $$PAB$$  is-

A $${x^2} + {y^2} + 4x - 6y + 19 = 0$$
B $${x^2} + {y^2} - 4x - 10y + 19 = 0$$
C $${x^2} + {y^2} - 2x + 6y - 29 = 0$$
D $${x^2} + {y^2} - 6x - 4y + 19 = 0$$
Answer :   $${x^2} + {y^2} - 4x - 10y + 19 = 0$$

37. $${C_1}$$ is a circle of radius 1 touching the $$x$$-axis and the $$y$$-axis. $${C_2}$$ is another circle of radius $$> 1$$  and touching the axes as well as the circle $${C_1}.$$ Then the radius of $${C_2}$$ is :

A $$3 - 2\sqrt 2 $$
B $$3 + 2\sqrt 2 $$
C $$3 + 2\sqrt 3 $$
D none of these
Answer :   $$3 + 2\sqrt 2 $$

38. If $$\left( {a,\,b} \right)$$  is a point on the chord $$AB$$ of the circle, where the ends of the chord are $$A = \left( {2,\, - 3} \right)$$   and $$B = \left( {3,\,2} \right),$$   then :

A $$a\, \in \,\left[ { - 3,\,2} \right],\,b\, \in \,\left[ {2,\,3} \right]$$
B $$a\, \in \,\left[ {2,\,3} \right],\,b\, \in \,\left[ { - 3,\,2} \right]$$
C $$a\, \in \,\left[ { - 2,\,2} \right],\,b\, \in \,\left[ { - 3,\,3} \right]$$
D none of these
Answer :   $$a\, \in \,\left[ {2,\,3} \right],\,b\, \in \,\left[ { - 3,\,2} \right]$$

39. The range of values of $$\theta \, \in \left[ {0,\,2\pi } \right]$$   for which $$\left( {1 + \cos \,\theta ,\,\sin \,\theta } \right)$$    is an interior point of the circle $${x^2} + {y^2} - 1$$   is :

A $$\left( {\frac{\pi }{6},\,\frac{{5\pi }}{6}} \right)$$
B $$\left( {\frac{{2\pi }}{3},\,\frac{{5\pi }}{3}} \right)$$
C $$\left( {\frac{\pi }{6},\,\frac{{7\pi }}{6}} \right)$$
D $$\left( {\frac{{2\pi }}{3},\,\frac{{4\pi }}{3}} \right)$$
Answer :   $$\left( {\frac{{2\pi }}{3},\,\frac{{4\pi }}{3}} \right)$$

40. What is the equation to circle which touches both the axes and has centre on the line $$x + y = 4\,?$$

A $${x^2} + {y^2} - 4x + 4y + 4 = 0$$
B $${x^2} + {y^2} - 4x - 4y + 4 = 0$$
C $${x^2} + {y^2} + 4x - 4y - 4 = 0$$
D $${x^2} + {y^2} + 4x + 4y - 4 = 0$$
Answer :   $${x^2} + {y^2} - 4x - 4y + 4 = 0$$