The given circle is $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$ Centre
$$\left( {1,\, - 2} \right).$$ Lines through centre $$\left( {1,\, - 2} \right)$$ and parallel to axes are $$x=1$$ and $$y=-2$$

Let the side of square be $$2k.$$
Then sides of square are $$x =1-k$$ and $$x=1+k$$
and $$y=-2-k$$ and $$y=-2+k$$
$$\therefore $$ Co-ordinates of $$P,\,Q,\,R, \,S$$ are $$\left( {1 + k,\, - 2 + k} \right),\,\left( {1 - k,\, - 2 + k} \right),\,\left( {1 - k,\, - 2 - k} \right),\,\left( {1 + k,\, - 2 - k} \right)$$ respectively.
Also $$P\left( {1 + k,\, - 2 + k} \right)$$ lies on circle
$$\eqalign{
& \therefore {\left( {1 + k} \right)^2} + {\left( { - 2 + k} \right)^2} - 2\left( {1 + k} \right) + 4\left( { - 2 + k} \right) + 3 = 0 \cr
& \Rightarrow 2{k^2} = 2 \cr
& \Rightarrow k = 1\,\,{\text{or}}\,\, - 1 \cr
& {\text{If }}k = 1, \cr
& P\left( {2,\, - 1} \right),\,Q\left( {0,\, - 1} \right),\,R\left( {0,\, - 3} \right),\,S\left( {2,\, - 3} \right) \cr
& {\text{If }}k = - 1, \cr
& P\left( {0,\, - 3} \right),\,Q\left( {2,\, - 3} \right),\,R\left( {2,\, - 1} \right),\,S\left( {0,\, - 1} \right) \cr} $$