The given circle is $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Centre
$$\left( {1,\, - 2} \right).$$  Lines through centre $$\left( {1,\, - 2} \right)$$  and parallel to axes are $$x=1$$  and $$y=-2$$

Let the side of square be $$2k.$$
Then sides of square are $$x =1-k$$   and $$x=1+k$$
and $$y=-2-k$$   and $$y=-2+k$$
$$\therefore $$ Co-ordinates of $$P,\,Q,\,R, \,S$$    are $$\left( {1 + k,\, - 2 + k} \right),\,\left( {1 - k,\, - 2 + k} \right),\,\left( {1 - k,\, - 2 - k} \right),\,\left( {1 + k,\, - 2 - k} \right)$$             respectively.
Also $$P\left( {1 + k,\, - 2 + k} \right)$$    lies on circle
$$\eqalign{
  & \therefore {\left( {1 + k} \right)^2} + {\left( { - 2 + k} \right)^2} - 2\left( {1 + k} \right) + 4\left( { - 2 + k} \right) + 3 = 0  \cr 
  &  \Rightarrow 2{k^2} = 2  \cr 
  &  \Rightarrow k = 1\,\,{\text{or}}\,\, - 1  \cr 
  & {\text{If   }}k = 1,  \cr 
  & P\left( {2,\, - 1} \right),\,Q\left( {0,\, - 1} \right),\,R\left( {0,\, - 3} \right),\,S\left( {2,\, - 3} \right)  \cr 
  & {\text{If   }}k =  - 1,  \cr 
  & P\left( {0,\, - 3} \right),\,Q\left( {2,\, - 3} \right),\,R\left( {2,\, - 1} \right),\,S\left( {0,\, - 1} \right) \cr} $$