Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

61. The equation of the image of circle $${x^2} + {y^2} + 16x - 24y + 183 = 0$$       by the line mirror $$4x + 7y + 13 = 0$$    is :

A $${x^2} + {y^2} + 32x - 4y + 235 = 0$$
B $${x^2} + {y^2} + 32x + 4y - 235 = 0$$
C $${x^2} + {y^2} + 32x - 4y - 235 = 0$$
D $${x^2} + {y^2} + 32x + 4y + 235 = 0$$
Answer :   $${x^2} + {y^2} + 32x + 4y + 235 = 0$$

62. If the lines $$3x-4y-7=0$$    and $$2x-3y-5=0$$    are two diameters of a circle of area $$49\pi $$  square units, the equation of the circle is-

A $${x^2} + {y^2} + 2x - 2y - 47 = 0$$
B $${x^2} + {y^2} + 2x - 2y - 62 = 0$$
C $${x^2} + {y^2} - 2x + 2y - 62 = 0$$
D $${x^2} + {y^2} - 2x + 2y - 47 = 0$$
Answer :   $${x^2} + {y^2} - 2x + 2y - 47 = 0$$

63. A circle touches the $$x$$-axis and also touches the circle with centre at $$\left( {0,\,3} \right)$$  and radius $$2$$. The locus of the centre of the circle is-

A an ellipse
B a circle
C a hyperbola
D a parabola
Answer :   a parabola

64. A triangle is formed by the lines whose combined equation is given by $$\left( {x + y - 4} \right)\left( {xy - 2x - y + 2} \right) = 0.$$       The equation of its circumcircle is :

A $${x^2} + {y^2} - 5x - 3y + 8 = 0$$
B $${x^2} + {y^2} - 3x - 5y + 8 = 0$$
C $${x^2} + {y^2} - 3x - 5y - 8 = 0$$
D none of these
Answer :   $${x^2} + {y^2} - 3x - 5y + 8 = 0$$

65. If the circle $${x^2} + {y^2} = {a^2}$$   intersects the hyperbola $$xy = {c^2}$$   in four points $$P\left( {{x_1},\,{y_1}} \right),\,Q\left( {{x_2},\,{y_2}} \right),\,R\left( {{x_3},\,{y_3}} \right),\,S\left( {{x_4},\,{y_4}} \right){\text{ then :}}$$

A $${x_1} + {x_2} + {x_3} + {x_4} = 0$$
B $${y_1} + {y_2} + {y_3} + {y_4} = 2$$
C $${x_1}{x_2}{x_3}{x_4} = 2{c^4}$$
D $${y_1}{y_2}{y_3}{y_4} = 2{c^4}$$
Answer :   $${x_1} + {x_2} + {x_3} + {x_4} = 0$$

66. The angle of intersection of the circles $${x^2} + {y^2} = 4$$   and $${x^2} + {y^2} = 2x + 2y$$     is :

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{3}$$
C $$\frac{\pi }{6}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{4}$$

67. A circle of radius 2 touches the coordinate axes in the first quadrant. If the circle makes a complete rotation on the $$x$$-axis along the positive direction of the $$x$$-axis then the equation of the circle in the new position is :

A $${x^2} + {y^2} - 4\left( {x + y} \right) - 8\pi x + {\left( {2 + 4\pi } \right)^2} = 0$$
B $${x^2} + {y^2} - 4x - 4y + {\left( {2 + 4\pi } \right)^2} = 0$$
C $${x^2} + {y^2} - 8\pi x - 4y + {\left( {2 + 4\pi } \right)^2} = 0$$
D none of these
Answer :   $${x^2} + {y^2} - 4\left( {x + y} \right) - 8\pi x + {\left( {2 + 4\pi } \right)^2} = 0$$

68. If the points $$A\left( {1,\,4} \right)$$  and $$B$$ are symmetrical about the tangent to the circle $${x^2} + {y^2} - x + y = 0$$     at the origin then coordinates of $$B$$ are :

A $$\left( {1,\,2} \right)$$
B $$\left( {\sqrt 2 ,\,1} \right)$$
C $$\left( {4,\,1} \right)$$
D none of these
Answer :   $$\left( {4,\,1} \right)$$

69. Two distinct chords drawn from the point $$\left( {p,\,q} \right)$$  on the circle $${x^2} + {y^2} = px + qy,$$     where $$pq \ne 0,$$   are bisected by the $$x$$-axis. Then :

A $$\left| p \right| = \left| q \right|$$
B $${p^2} = 8{q^2}$$
C $${p^2} < 8{q^2}$$
D $${p^2} > 8{q^2}$$
Answer :   $${p^2} > 8{q^2}$$

70. ‘The angle between a pair of tangents drawn from a point $$P$$ to the circle $${x^2} + {y^2} + 4x - 6y + 9\,{\sin ^2}\alpha + 13\,{\cos ^2}\alpha = 0$$         is $$2\alpha .$$  The equation of the locus of the point $$P$$ is-

A $${x^2} + {y^2} + 4x - 6y + 4 = 0$$
B $${x^2} + {y^2} + 4x - 6y - 9 = 0$$
C $${x^2} + {y^2} + 4x - 6y - 4 = 0$$
D $${x^2} + {y^2} + 4x - 6y + 9 = 0$$
Answer :   $${x^2} + {y^2} + 4x - 6y + 9 = 0$$