Circle MCQ Questions & Answers in Geometry | Maths
Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
The equation of the image of circle $${x^2} + {y^2} + 16x - 24y + 183 = 0$$ by the line mirror $$4x + 7y + 13 = 0$$ is :
A
$${x^2} + {y^2} + 32x - 4y + 235 = 0$$
B
$${x^2} + {y^2} + 32x + 4y - 235 = 0$$
C
$${x^2} + {y^2} + 32x - 4y - 235 = 0$$
D
$${x^2} + {y^2} + 32x + 4y + 235 = 0$$
Answer :
$${x^2} + {y^2} + 32x + 4y + 235 = 0$$
The centre of the given circle is $$\left( { - 8,\,12} \right)$$ and radius is $$5.$$
The image of the circle will have the same radius, i.e. the radius of the required circle is $$5$$. The centre $$D$$ of the required circle is the image of the centre $$C$$ of the given circle in the line mirror. If $$D$$ be $$\left( {\alpha ,\,\beta } \right)$$ then
$$\eqalign{
& \frac{{\alpha + 8}}{4} = \frac{{\beta - 12}}{7} = - 2\left[ {\frac{{4 \times - 8 + 7 \times 12 + 13}}{{{4^2} + {7^2}}}} \right]\,\,\,\,\left[ {{\text{See straight line}}} \right] \cr
& {\text{or, }}\frac{{\alpha + 8}}{4} = \frac{{\beta - 12}}{7} = \frac{{ - 2 \times 65}}{{65}} = - 2 \cr
& \therefore \,\alpha = - 16,\,\,\beta = - 2 \cr} $$
$$\therefore $$ Required circle is $${\left( {x + 16} \right)^2} + {\left( {y + 2} \right)^2} = {5^2}$$
62.
If the lines $$3x-4y-7=0$$ and $$2x-3y-5=0$$ are two diameters of a circle of area $$49\pi $$ square units, the equation of the circle is-
A
$${x^2} + {y^2} + 2x - 2y - 47 = 0$$
B
$${x^2} + {y^2} + 2x - 2y - 62 = 0$$
C
$${x^2} + {y^2} - 2x + 2y - 62 = 0$$
D
$${x^2} + {y^2} - 2x + 2y - 47 = 0$$
Answer :
$${x^2} + {y^2} - 2x + 2y - 47 = 0$$
Point of intersection of $$3x-4y-7=0$$ and $$2x-3y-5=0$$ is (1, $$-$$ 1) which is the centre of the circle and radius $$=7$$
$$\therefore $$ Equation is $${\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 49$$
$$ \Rightarrow {x^2} + {y^2} - 2x + 2y - 47 = 0$$
63.
A circle touches the $$x$$-axis and also touches the circle with centre at $$\left( {0,\,3} \right)$$ and radius $$2$$. The locus of the centre of the circle is-
A
an ellipse
B
a circle
C
a hyperbola
D
a parabola
Answer :
a parabola
Equation of circle with centre $$\left( {0,\,3} \right)$$ and radius $$2$$ is $${x^2} + {\left( {y - 3} \right)^2} = 4$$
Let locus of the variable circle is $$\left( {\alpha ,\,\beta } \right)$$
$$\because $$ It touches $$x$$-axis.
$$\therefore $$ It's equation is $${\left( {x - \alpha } \right)^2} + {\left( {y + \beta } \right)^2} = {\beta ^2}$$
Circle touch externally $$ \Rightarrow {c_1}{c_2} = {r_1} + {r_2}$$
$$\eqalign{
& \therefore \sqrt {{\alpha ^2} + {{\left( {\beta - 3} \right)}^2}} = 2 + \beta \cr
& {\alpha ^2} + {\left( {\beta - 3} \right)^2} = {\beta ^2} + 4 + 4\beta \cr
& \Rightarrow {\alpha ^2} = 10\left( {\beta - \frac{1}{2}} \right) \cr} $$
$$\therefore $$ Locus is $${x^2} = 10\left( {y - \frac{1}{2}} \right)$$ which is a parabola.
64.
A triangle is formed by the lines whose combined equation is given by $$\left( {x + y - 4} \right)\left( {xy - 2x - y + 2} \right) = 0.$$ The equation of its circumcircle is :
A
$${x^2} + {y^2} - 5x - 3y + 8 = 0$$
B
$${x^2} + {y^2} - 3x - 5y + 8 = 0$$
C
$${x^2} + {y^2} - 3x - 5y - 8 = 0$$
D
none of these
Answer :
$${x^2} + {y^2} - 3x - 5y + 8 = 0$$
Given combined equation is
$$\eqalign{
& \left( {x + y - 4} \right)\left( {xy - 2x - y + 2} \right) = 0 \cr
& \Rightarrow \left( {x + y - 4} \right)\left( {x - 1} \right)\left( {y - 2} \right) = 0 \cr} $$
So, the equation of sides of the triangle are $$x = 1,\,y = 2,\,x + y = 4$$
Point of intersection of any two sides of a triangle will give the vertices of triangle.
So, the vertices of the triangle are $$A\left( {1,\,3} \right),\,B\left( {1,\,2} \right),\,C\left( {2,\,2} \right)$$
Slope of $$AC = \frac{{2 - 3}}{{2 - 1}} = - 1$$
So, slope of its perpendicular bisector is 1.
Mid-point of $$AC$$ is $$\left( {\frac{3}{2},\,\frac{5}{2}} \right)$$
So, equation of perpendicular bisector of $$AC$$ is
$$\eqalign{
& y - \frac{5}{2} = \left( {x - \frac{3}{2}} \right) \cr
& \Rightarrow 2y - 2x = 2 \cr
& \Rightarrow y - x = 1......\left( 1 \right) \cr} $$
Clearly, $$AB$$ makes an angle of $${90^ \circ }$$ with $$x$$-axis.
So, slope of perpendicular bisector of $$AB$$ is 0.
Mid-point of $$AB$$ is $$\left( {1,\,\frac{5}{2}} \right)$$
So, equation of perpendicular bisector of $$AB$$ is
$$y - \frac{5}{2} = 0......\left( 2 \right)$$
Solving equation (1) and (2), we get
$$x = \frac{3}{2},\,y = \frac{5}{2}$$
So, the coordinates of circumcenter is $$O\left( {\frac{3}{2},\,\frac{5}{2}} \right)$$
Radius $$ = OA = \frac{1}{{\sqrt 2 }}$$
Equation of circumcircle is
$$\eqalign{
& {\left( {x - \frac{3}{2}} \right)^2} + {\left( {y - \frac{5}{2}} \right)^2} = \frac{1}{2} \cr
& \Rightarrow 4{x^2} + 9 - 12x + 4{y^2} + 25 - 20y = 2 \cr
& \Rightarrow {x^2} + {y^2} - 3x - 5y + 8 = 0 \cr} $$
65.
If the circle $${x^2} + {y^2} = {a^2}$$ intersects the hyperbola $$xy = {c^2}$$ in four points $$P\left( {{x_1},\,{y_1}} \right),\,Q\left( {{x_2},\,{y_2}} \right),\,R\left( {{x_3},\,{y_3}} \right),\,S\left( {{x_4},\,{y_4}} \right){\text{ then :}}$$
66.
The angle of intersection of the circles $${x^2} + {y^2} = 4$$ and $${x^2} + {y^2} = 2x + 2y$$ is :
A
$$\frac{\pi }{2}$$
B
$$\frac{\pi }{3}$$
C
$$\frac{\pi }{6}$$
D
$$\frac{\pi }{4}$$
Answer :
$$\frac{\pi }{4}$$
Equations of the circles are
$$\eqalign{
& {x^2} + {y^2} = 4......\left( 1 \right) \cr
& {\text{and }}{x^2} + {y^2} = 2x + 2y......\left( 2 \right) \cr} $$
Centre of $$\left( 1 \right)$$ is $${C_1} \equiv \left( {0,\,0} \right)\,;$$ Radius of $$\left( 1 \right) = {r_1} = 2\,;$$
Centre of $$\left( 2 \right)$$ is $${C_2} \equiv \left( {1,\,1} \right)\,;$$ Radius of $$\left( 2 \right) = {r_2} = \sqrt 2 $$
$$d = $$ distance between centers $$ = {C_1}{C_2} = \sqrt {1 + 1} = \sqrt 2 $$
If $$\theta $$ is the angle of intersection of two circles, then
$$\eqalign{
& \cos \,\theta = \frac{{r_1^2 + r_2^2 - {d^2}}}{{2{r_1}{r_2}}} = \frac{{{{\left( 2 \right)}^2} + {{\left( {\sqrt 2 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}{{2.2\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \cr
& \therefore \,\theta = \frac{\pi }{4} \cr} $$
67.
A circle of radius 2 touches the coordinate axes in the first quadrant. If the circle makes a complete rotation on the $$x$$-axis along the positive direction of the $$x$$-axis then the equation of the circle in the new position is :
In the beginning, coordinates of the centre $$ = \left( {2,\,2} \right),$$ radius $$= 2.$$ After one complete revolution on the $$x$$-axis in the positive direction, the $$x$$-coordinate increases by $$2\pi r,$$ i.e., $$4\pi ,$$ whereas the $$y$$-coordinate remains the same.
68.
If the points $$A\left( {1,\,4} \right)$$ and $$B$$ are symmetrical about the tangent to the circle $${x^2} + {y^2} - x + y = 0$$ at the origin then coordinates of $$B$$ are :
A
$$\left( {1,\,2} \right)$$
B
$$\left( {\sqrt 2 ,\,1} \right)$$
C
$$\left( {4,\,1} \right)$$
D
none of these
Answer :
$$\left( {4,\,1} \right)$$
The tangent at the origin is $$y - x = 0.\,B$$ is the image of $$A\left( {1,\,4} \right)$$ by this line.
69.
Two distinct chords drawn from the point $$\left( {p,\,q} \right)$$ on the circle $${x^2} + {y^2} = px + qy,$$ where $$pq \ne 0,$$ are bisected by the $$x$$-axis. Then :
A
$$\left| p \right| = \left| q \right|$$
B
$${p^2} = 8{q^2}$$
C
$${p^2} < 8{q^2}$$
D
$${p^2} > 8{q^2}$$
Answer :
$${p^2} > 8{q^2}$$
Here, the centre $$ = \left( {\frac{p}{2},\,\frac{q}{2}} \right)$$
So, $$\left( {p,\,q} \right)$$ and $$\left( {0,\,0} \right)$$ are the ends of a diameter. As the two chords are bisected by the line $$y=0,$$ the chords will cut the circle at the points $$\left( {{x_1},\, - q} \right)$$ and $$\left( {{x_2},\, - q} \right)$$ where $${x_1},\,{x_2}$$ are real.
Clearly, the line joining these points is $$y=-q.$$ Solving $$y=-q$$ and $${x^2} + {y^2} = px + qy,$$ we get $${x^2} - px + 2{q^2} = 0,$$ whose roots are $${x_1},\,{x_2}.$$
For real distinct roots $$D > 0,\,\,{\text{i}}{\text{.e}}{\text{.,}}\,{p^2} - 8{q^2} > 0.$$
70.
‘The angle between a pair of tangents drawn from a point $$P$$ to the circle $${x^2} + {y^2} + 4x - 6y + 9\,{\sin ^2}\alpha + 13\,{\cos ^2}\alpha = 0$$ is $$2\alpha .$$ The equation of the locus of the point $$P$$ is-
A
$${x^2} + {y^2} + 4x - 6y + 4 = 0$$
B
$${x^2} + {y^2} + 4x - 6y - 9 = 0$$
C
$${x^2} + {y^2} + 4x - 6y - 4 = 0$$
D
$${x^2} + {y^2} + 4x - 6y + 9 = 0$$
Answer :
$${x^2} + {y^2} + 4x - 6y + 9 = 0$$
Centre of the circle
$${x^2} + {y^2} + 4x - 6y + 9\,{\sin ^2}\alpha + 13\,{\cos ^2}\alpha = 0$$
is $$C\left( { - 2,\,3} \right)$$ and its radius is
$$\eqalign{
& \sqrt {{2^2} + {{\left( { - 3} \right)}^2} - 9\,{{\sin }^2}\alpha + 13\,{{\cos }^2}\alpha } \cr
& = \sqrt {4 + 9 - 9\,{{\sin }^2}\alpha + 13\,{{\cos }^2}\alpha } \cr
& = 2\,\sin \,\alpha \cr} $$
Let $$P\left( {h,\,k} \right)$$ be any point on the locus. The $$\angle APC = \alpha $$
Also $$\angle PAC = \frac{\pi }{2}$$
That is, triangle $$APC$$ is a right triangle.
Thus, $$\sin \,\alpha = \frac{{AC}}{{PC}} = \frac{{2\,\sin \,\alpha }}{{\sqrt {{{\left( {h + 2} \right)}^2} + {{\left( {k - 3} \right)}^2}} }}$$
$$\eqalign{
& \Rightarrow \sqrt {{{\left( {h + 2} \right)}^2} + {{\left( {k - 3} \right)}^2}} = 2 \cr
& \Rightarrow {\left( {h + 2} \right)^2} + {\left( {k - 3} \right)^2} = 4 \cr
& {\text{or}}\,\,{h^2} + {k^2} + 4h - 6k + 9 = 0 \cr} $$
Thus required equation of the locus is $${x^2} + {y^2} + 4x - 6y + 9 = 0$$