Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

71. The number of common tangents to the circles $${x^2} + {y^2} - 6x - 14y + 48 = 0$$      and $${x^2} + {y^2} - 6x = 0$$    is :

A 1
B 2
C 0
D 4
Answer :   4

72. The centres of those circles which touch the circle, $${x^2} + {y^2} - 8x - 8y - 4 = 0,$$      externally and also touch the $$x$$-axis, lie on :

A a hyperbola
B a parabola
C a circle
D an ellipse which is not a circle
Answer :   a parabola

73. The number of common tangents to the circles one of which passes through the origin and cuts off intercepts 2 from each of the axes, and the other circle has the line segment joining the origin and the point (1, 1) as a diameter, is :

A 0
B 1
C 3
D 2
Answer :   1

74. The two circles $${x^2} + {y^2} = ax$$   and $${x^2} + {y^2} = {c^2}\left( {c > 0} \right)$$     touch each other if-

A $$\left| a \right| = c$$
B $$a = 2c$$
C $$\left| a \right| = 2c$$
D $$2\left| a \right| = c$$
Answer :   $$\left| a \right| = c$$

75. Let $$C$$ be the circle with centre at $$\left( {1,\,1} \right)$$  and radius $$ = 1.$$  If $$T$$ is the circle centred at $$\left( {0,\,y} \right),$$  passing through origin and touching the circle $$C$$ externally, then the radius of $$T$$ is equal to-

A $$\frac{1}{2}$$
B $$\frac{1}{4}$$
C $$\frac{{\sqrt 3 }}{{\sqrt 2 }}$$
D $$\frac{{\sqrt 3 }}{2}$$
Answer :   $$\frac{1}{4}$$

76. The centre of a circle passing through the points $$\left( {0,\,0} \right),\,\left( {1,\,0} \right)$$   and touching the circle $${x^2} + {y^2} = 9$$    is-

A $$\left( {\frac{3}{2},\,\frac{1}{2}} \right)$$
B $$\left( {\frac{1}{2},\,\frac{3}{2}} \right)$$
C $$\left( {\frac{1}{2},\,\frac{1}{2}} \right)$$
D $$\left( {\frac{1}{2},\, - {2^{\frac{1}{2}}}} \right)$$
Answer :   $$\left( {\frac{1}{2},\, - {2^{\frac{1}{2}}}} \right)$$

77. The differential equation of the family of circles with fixed radius $$5$$ units and centre on the line $$y = 2$$  is-

A $$\left( {x - 2} \right)y{'^2} = 25 - {\left( {y - 2} \right)^2}$$
B $$\left( {y - 2} \right)y{'^2} = 25 - {\left( {y - 2} \right)^2}$$
C $${\left( {y - 2} \right)^2}y{'^2} = 25 - {\left( {y - 2} \right)^2}$$
D $${\left( {x - 2} \right)^2}y{'^2} = 25 - {\left( {y - 2} \right)^2}$$
Answer :   $${\left( {y - 2} \right)^2}y{'^2} = 25 - {\left( {y - 2} \right)^2}$$

78. The centres of a set of circles, each of radius 3, lie on the circle $${x^2} + {y^2} = 25.$$   The locus of any point in the set is-

A $$4 \leqslant {x^2} + {y^2} \leqslant 64$$
B $${x^2} + {y^2} \leqslant 25$$
C $${x^2} + {y^2} \geqslant 25$$
D $$3 \leqslant {x^2} + {y^2} \leqslant 9$$
Answer :   $$4 \leqslant {x^2} + {y^2} \leqslant 64$$

79. The circle $${x^2} + {y^2} = 4x + 8y + 5$$     intersects the line $$3x-4y=m$$    at two distinct points if-

A $$ - 35 < m < 15$$
B $$ 15 < m < 65$$
C $$ 35 < m < 85$$
D $$ - 85 < m < - 35$$
Answer :   $$ - 35 < m < 15$$

80. Let $$PQ$$  and $$RS$$  be tangents at the extremities of the diameter $$PR$$  of a circle of radius $$r.$$  If $$PS$$  and $$RQ$$  intersect at a point $$X$$ on the circumference of the circle, then $$2r$$  equals-

A $$\sqrt {PQ.RS} $$
B $$\frac{{\left( {PQ + RS} \right)}}{2}$$
C $$\frac{{2.PQ.RS}}{{\left( {PQ + RS} \right)}}$$
D $$\frac{{\sqrt {\left( {P{Q^2} + R{S^2}} \right)} }}{2}$$
Answer :   $$\sqrt {PQ.RS} $$