Circle MCQ Questions & Answers in Geometry | Maths
Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
The number of common tangents to the circles $${x^2} + {y^2} - 6x - 14y + 48 = 0$$ and $${x^2} + {y^2} - 6x = 0$$ is :
A
1
B
2
C
0
D
4
Answer :
4
For the first circle, centre $$ = \left( {3,\,7} \right),$$ radius $${r_1} = \sqrt {{3^2} + {7^2} - 48} = \sqrt {10} $$
For the second circle, centre $$ = \left( {3,\,0} \right),$$ radius $${r_2} = 3$$
So, $${r_1} + {r_2} < d$$ ( $$=$$ the distance between centres ).
$$\therefore $$ circles do not cut and hence the number of common tangents $$=4.$$
72.
The centres of those circles which touch the circle, $${x^2} + {y^2} - 8x - 8y - 4 = 0,$$ externally and also touch the $$x$$-axis, lie on :
A
a hyperbola
B
a parabola
C
a circle
D
an ellipse which is not a circle
Answer :
a parabola
For the given circle,
centre : $$\left( {4,\,4} \right)$$
radius $$= 6$$
$$\eqalign{
& 6 + k = \sqrt {{{\left( {h - 4} \right)}^2} + {{\left( {k - 4} \right)}^2}} \cr
& {\left( {h - 4} \right)^2} = 20k + 20 \cr} $$
locus of $$\left( {h,\,k} \right)$$ is
$${\left( {x - 4} \right)^2} = 20\left( {y + 1} \right),$$
which is a parabola.
73.
The number of common tangents to the circles one of which passes through the origin and cuts off intercepts 2 from each of the axes, and the other circle has the line segment joining the origin and the point (1, 1) as a diameter, is :
74.
The two circles $${x^2} + {y^2} = ax$$ and $${x^2} + {y^2} = {c^2}\left( {c > 0} \right)$$ touch each other if-
A
$$\left| a \right| = c$$
B
$$a = 2c$$
C
$$\left| a \right| = 2c$$
D
$$2\left| a \right| = c$$
Answer :
$$\left| a \right| = c$$
As centre of one circle is (0, 0) and other circle passes through (0, 0), therefore
$$\eqalign{
& {\text{Also }}{C_1}\left( {\frac{a}{2},\,0} \right)\,\,\,\,{C_2}\left( {0,\,0} \right) \cr
& {r_1} = \frac{a}{2}\,\,\,\,{r_2} = C \cr
& {C_1}{C_2} = {r_1} - {r_2} = \frac{a}{2} \cr
& \Rightarrow C - \frac{a}{2} = \frac{a}{2} \cr
& \Rightarrow C = a \cr} $$
If the two circles touch each other, then they must touch each other internally.
75.
Let $$C$$ be the circle with centre at $$\left( {1,\,1} \right)$$ and radius $$ = 1.$$ If $$T$$ is the circle centred at $$\left( {0,\,y} \right),$$ passing through origin and touching the circle $$C$$ externally, then the radius of $$T$$ is equal to-
A
$$\frac{1}{2}$$
B
$$\frac{1}{4}$$
C
$$\frac{{\sqrt 3 }}{{\sqrt 2 }}$$
D
$$\frac{{\sqrt 3 }}{2}$$
Answer :
$$\frac{1}{4}$$
Equation of circle $$C \equiv {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1$$
Radius of $$T = \left| y \right|$$
$$T$$ touches $$C$$ externally
therefore,
Distance between the centres $$=$$ sum of their radii
$$\eqalign{
& \Rightarrow \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} = 1 + \left| y \right| \cr
& \Rightarrow {\left( {0 - 1} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {1 + \left| y \right|} \right)^2} \cr
& \Rightarrow 1 + {y^2} + 1 - 2y = 1 + {y^2} + 2\left| y \right| \cr
& \Rightarrow 2\left| y \right| = 1 - 2y \cr
& {\text{If }}y > 0{\text{ then 2}}y = 1 - 2y \Rightarrow y = \frac{1}{4} \cr
& {\text{If }}y < 0{\text{ then }} - {\text{2}}y = 1 - 2y \Rightarrow 0 = 1\left( {{\text{not possible}}} \right) \cr
& \therefore \,\,\,\,y = \frac{1}{4} \cr} $$
76.
The centre of a circle passing through the points $$\left( {0,\,0} \right),\,\left( {1,\,0} \right)$$ and touching the circle $${x^2} + {y^2} = 9$$ is-
A
$$\left( {\frac{3}{2},\,\frac{1}{2}} \right)$$
B
$$\left( {\frac{1}{2},\,\frac{3}{2}} \right)$$
C
$$\left( {\frac{1}{2},\,\frac{1}{2}} \right)$$
D
$$\left( {\frac{1}{2},\, - {2^{\frac{1}{2}}}} \right)$$
Let the equation of the circle be
$${x^2} + {y^2} + 2gx + 2fy + c = 0$$
As this circle passes through $$\left( {0,\,0} \right)$$ and $$\left( {1,\,0} \right),$$ we get $$c=0,\,\,1+2g=0$$
$$ \Rightarrow g = - \frac{1}{2}$$
According to the question this circle touches the given circle $${x^2} + {y^2} = 9$$
$$ \Rightarrow 2 \times $$   radius of required circle $$=$$ radius of given circle
$$\eqalign{
& \Rightarrow 2\sqrt {{g^2} + {f^2}} = 3 \cr
& \Rightarrow {g^2} + {f^2} = \frac{9}{4} \cr
& \Rightarrow \frac{1}{4} + {f^2} = \frac{9}{4} \cr
& \Rightarrow {f^2} = 2\,\,\,\,\, \cr
& \Rightarrow f = \pm \sqrt 2 \cr} $$
$$\therefore $$ The centre is $$\left( {\frac{1}{2},\,\sqrt 2 } \right),\,\,\left( {\frac{1}{2},\, - \sqrt 2 } \right)$$
77.
The differential equation of the family of circles with fixed radius $$5$$ units and centre on the line $$y = 2$$ is-
For any point $$P\left( {x,\,y} \right)$$ in the given circle,
we should have
$$\eqalign{
& OA \leqslant OP \leqslant OB \Rightarrow \left( {5 - 3} \right) \leqslant \sqrt {{x^2} + {y^2}} \leqslant 5 + 3 \cr
& \Rightarrow 4 \leqslant {x^2} + {y^2} \leqslant 64 \cr} $$
79.
The circle $${x^2} + {y^2} = 4x + 8y + 5$$ intersects the line $$3x-4y=m$$ at two distinct points if-
A
$$ - 35 < m < 15$$
B
$$ 15 < m < 65$$
C
$$ 35 < m < 85$$
D
$$ - 85 < m < - 35$$
Answer :
$$ - 35 < m < 15$$
Circle $${x^2} + {y^2} - 4x - 8y - 5 = 0$$
Centre $$ = \left( {2,\,4} \right),$$ Radius $$ = \sqrt {4 + 16 + 5} = 5$$
If circle is intersecting line $$3x-4y=m,$$ at two distinct points.
$$ \Rightarrow $$ length of perpendicular from centre to the line < radius
$$\eqalign{
& \Rightarrow \frac{{\left| {6 - 16 - m} \right|}}{5} < 5 \cr
& \Rightarrow \left| {10 + m} \right| < 25 \cr
& \Rightarrow - 25 < m + 10 < 25 \cr
& \Rightarrow - 35 < m < 15 \cr} $$
80.
Let $$PQ$$ and $$RS$$ be tangents at the extremities of the diameter $$PR$$ of a circle of radius $$r.$$ If $$PS$$ and $$RQ$$ intersect at a point $$X$$ on the circumference of the circle, then $$2r$$ equals-
A
$$\sqrt {PQ.RS} $$
B
$$\frac{{\left( {PQ + RS} \right)}}{2}$$
C
$$\frac{{2.PQ.RS}}{{\left( {PQ + RS} \right)}}$$
D
$$\frac{{\sqrt {\left( {P{Q^2} + R{S^2}} \right)} }}{2}$$