Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

81. If one of the diameters of the circle $${x^2} + {y^2} - 2x - 6y + 6 = 0$$      is a chord to the circle with centre (2, 1), then the radius of the circle is-

A $$\sqrt 3 $$
B $$\sqrt 2 $$
C $$3$$
D $$2$$
Answer :   $$3$$

82. If the common chord of the circles $${x^2} + {\left( {y - \lambda } \right)^2} = 16$$    and $${x^2} + {y^2} = 16$$   subtend a right angle at the origin then $$\lambda $$ is equal to :

A $$4$$
B $$4\sqrt 2 $$
C $$ \pm 4\sqrt 2 $$
D $$8$$
Answer :   $$ \pm 4\sqrt 2 $$

83. If polar of a circle $${x^2} + {y^2} = {a^2}$$   with respect to $$\left( {x',\,y'} \right)$$  is $$Ax + By + C = 0,$$    then its pole will be :

A $$\left( {\frac{{{a^2}A}}{{ - C}},\,\frac{{{a^2}B}}{{ - C}}} \right)$$
B $$\left( {\frac{{{a^2}A}}{C},\,\frac{{{a^2}B}}{C}} \right)$$
C $$\left( {\frac{{{a^2}C}}{A},\,\frac{{{a^2}C}}{B}} \right)$$
D $$\left( {\frac{{{a^2}C}}{{ - A}},\,\frac{{{a^2}C}}{{ - B}}} \right)$$
Answer :   $$\left( {\frac{{{a^2}A}}{{ - C}},\,\frac{{{a^2}B}}{{ - C}}} \right)$$

84. A ray of light incident at the point $$\left( { - 2,\, - 1} \right)$$   gets reflected from the tangent at $$\left( {0,\, - 1} \right)$$  to the circle $${x^2} + {y^2} = 1.$$   The reflected ray touches the circle. The equation of the line along which the incident ray moved is :

A $$4x - 3y + 11 = 0$$
B $$4x + 3y + 11 = 0$$
C $$3x + 4y + 11 = 0$$
D none of these
Answer :   $$4x + 3y + 11 = 0$$

85. The intercept on the line $$y=x$$  by the circle $${x^2} + {y^2} - 2x = 0$$     is $$AB.$$  The equation of the circle with $$AB$$  as a diameter is :

A $${x^2} + {y^2} + x + y = 0$$
B $${x^2} + {y^2} = x + y$$
C $${x^2} + {y^2} - 3x + y = 0$$
D none of these
Answer :   $${x^2} + {y^2} = x + y$$

86. If a circle passes through the points of intersection of the lines $$2x - y + 1 = 0$$    and $$x + \lambda y - 3 = 0$$    with the axes of reference then the value of $$\lambda $$ is :

A $$\frac{1}{2}$$
B $$2$$
C $$1$$
D $$-2$$
Answer :   $$-2$$

87. The lines $$2x-3y=5$$   and $$3x-4y=7$$   are diameters of a circle having area as $$154$$  square units. Then the equation of the circle is-

A $${x^2} + {y^2} - 2x + 2y = 62$$
B $${x^2} + {y^2} + 2x - 2y = 62$$
C $${x^2} + {y^2} + 2x - 2y = 47$$
D $${x^2} + {y^2} - 2x + 2y = 47$$
Answer :   $${x^2} + {y^2} - 2x + 2y = 47$$

88. The members of a family of circles are given by the equation $$2\left( {{x^2} + {y^2}} \right) + \lambda x - \left( {1 + {\lambda ^2}} \right)y - 10 = 0.$$        The number of circles belonging to the family that are cut orthogonally by the fixed circle $${x^2} + {y^2} + 4x + 6y + 3 = 0$$      is :

A 2
B 1
C 0
D none of these
Answer :   2

89. Consider a circle of radius $$R$$. What is the length of a chord which subtends an angle $$\theta $$ at the centre ?

A $$2R\,\sin \left( {\frac{\theta }{2}} \right)$$
B $$2R\,\sin \,\theta $$
C $$2R\,\tan \left( {\frac{\theta }{2}} \right)$$
D $$2R\,\tan \,\theta $$
Answer :   $$2R\,\sin \left( {\frac{\theta }{2}} \right)$$

90. Let $$AB$$  be a chord of the circle $${x^2} + {y^2} = {r^2}$$    subtending a right angle at the centre. Then the locus of the centroid of the triangle $$PAB$$  as $$P$$ moves on the circle is-

A a parabola
B a circle
C an ellipse
D a pair of straight lines
Answer :   a circle