Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths
Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
91.
In a triangle $$PQR,$$ $$\angle R = \frac{\pi }{2}.$$ If $$\tan \left( {\frac{P}{2}} \right)$$ and $$\tan \left( {\frac{Q}{2}} \right)$$ are the roots of the equation $$a{x^2} + bx + c = 0\left( {a \ne 0} \right)$$ then.
A
$$a + b = c$$
B
$$b + c = a$$
C
$$a + c = b$$
D
$$b = c$$
Answer :
$$a + b = c$$
Given that in $$\Delta PQR,\angle R = \frac{\pi }{2}$$
$$\eqalign{
& \Rightarrow \,\,\angle P + \angle Q = \frac{\pi }{2} \cr
& \Rightarrow \,\,\frac{{\angle P}}{2} + \frac{{\angle Q}}{2} = \frac{\pi }{4} \cr} $$
Also $$\tan \frac{P}{2}{\text{ and tan}}\frac{Q}{2}$$ are roots of the equation
$$\eqalign{
& a{x^2} + bx + c = 0\left( {a \ne 0} \right) \cr
& \therefore \,\,\tan \frac{P}{2} + \tan \frac{Q}{2} = - \frac{b}{a};\tan \frac{P}{2}\tan \frac{Q}{2} = \frac{c}{a} \cr} $$
Now consider, $$\tan \left( {\frac{{P + Q}}{2}} \right) = \frac{{\tan \frac{P}{2} + \tan \frac{Q}{2}}}{{1 - \tan \frac{P}{2}\tan \frac{Q}{2}}}$$
$$\eqalign{
& \Rightarrow \,\,\tan \frac{\pi }{4} = \frac{{ - \frac{b}{a}}}{{1 - \frac{c}{a}}} \cr
& \Rightarrow \,\,1 - \frac{c}{a} = - \frac{b}{a} \cr
& \Rightarrow \,\,a - c = - b \cr
& \Rightarrow \,\,a + b = c \cr} $$
92.
In a triangle $$ABC, \sin A - \cos B = \cos C,$$ then what is $$B$$ equal to ?
93.
If $$ABCD$$ is a cyclic quadrilateral such that $$12\tan A - 5 = 0$$ and $$5\cos B + 3 = 0$$ then the quadratic equation whose roots are $$\cos C,\tan D$$ is
A
$$39{x^2} - 16x - 48 = 0$$
B
$$39{x^2} + 88x + 48 = 0$$
C
$$39{x^2} - 88x + 48 = 0$$
D
None of these
Answer :
$$39{x^2} - 16x - 48 = 0$$
In a convex quadrilateral no angle is greater than $${180^ \circ }$$
$$\eqalign{
& {\text{Here, }}\tan A = \frac{5}{{12}}.\,{\text{So, }}0 < A < \frac{\pi }{2}\,{\text{and }}\frac{\pi }{2} < C < \pi \,\,\left( {\because \,\,A + C = {{180}^ \circ }} \right) \cr
& \therefore \,\,\tan \left( {\pi - C} \right) = \frac{5}{{12}},\,{\text{i}}{\text{.e}}{\text{., }}\tan C = - \frac{5}{{12}}\,\,\,\,\,\,\therefore \,\,\cos C = - \frac{{12}}{{13}}. \cr
& {\text{Also, }}\cos B = - \frac{3}{5}.\,{\text{So, }}\frac{\pi }{2} < B < \pi \,\,{\text{and }}0 < D < \frac{\pi }{2}\,\,\,\,\,\,\left( {\because \,\,B + D = {{180}^ \circ }} \right) \cr
& \therefore \,\,\cos \left( {\pi - D} \right) = - \frac{3}{5},\,{\text{i}}{\text{.e}}{\text{., }}\cos D = \frac{3}{5}\,\,\,\,\,\,\therefore \,\,\tan D = \frac{4}{3}. \cr} $$
∴ the required equation is $${x^2} - \left( { - \frac{{12}}{{13}} + \frac{4}{3}} \right)x + \left( { - \frac{{12}}{{13}}} \right) \cdot \frac{4}{3} = 0.$$
94.
If $$\left| {\tan A} \right| < 1,$$ and $$\left| A \right|$$ is acute then $$\frac{{\sqrt {1 + \sin 2A} + \sqrt {1 - \sin 2A} }}{{\sqrt {1 + \sin 2A} - \sqrt {1 - \sin 2A} }}$$ is equal to
A
$$ \tan A$$
B
$$ - \tan A$$
C
$$ \cot A$$
D
$$ - \cot A$$
Answer :
$$ \cot A$$
The expression $$ = \frac{{\left| {\cos A + \sin A} \right| + \left| {\cos A - \sin A} \right|}}{{\left| {\cos A + \sin A} \right| - \left| {\cos A - \sin A} \right|}}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\cos A + \sin A + \cos A - \sin A}}{{\cos A + \sin A - \left( {\cos A - \sin A} \right)}}$$ because $$ - \frac{\pi }{4} < A < \frac{\pi }{4}$$ and in this interval $$\cos A > \sin A.$$
95.
The number of values of $$x$$ in the interval $$\left[ {0,5\pi } \right]$$ satisfying the equation $$3\,{\sin ^2}x - 7\sin x + 2 = 0$$ is
98.
The maximum value of $$1 + \sin \left( {\frac{\pi }{4} + \theta } \right) + 2\cos \left( {\frac{\pi }{4} - \theta } \right)$$ for real values of $$\theta $$ is