175.
Elements of a matrix $$A$$ of order $$10 \times 10$$ are defined as $$a_{ij} = w^{i+j}$$ (where $$w$$ is cube root of unity), then $$tr\left( A \right)$$ of the matrix is
176.
Let $$\omega $$ be a complex number such that $$2\omega + 1 = z$$ where $$z = \sqrt { - 3} .$$ If \[\left| \begin{array}{l}
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\
1\,\,\,\,\,\, - {\omega ^2} - 1\,\,\,\,\,\,\,\,\,{\omega ^2}\\
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,{\omega ^7}
\end{array} \right| = 3k,\] then $$k$$ is equal to:
177.
The determinant \[\left| {\begin{array}{*{20}{c}}
{a + b + c}&{a + b}&a\\
{4a + 3b + 2c}&{3a + 2b}&{2a}\\
{10a + 6b + 3c}&{6a + 3b}&{3a}
\end{array}} \right|\] is independent of which one of the following ?
A
$$a$$ and $$b$$
B
$$b$$ and $$c$$
C
$$a$$ and $$c$$
D
All of these
Answer :
$$b$$ and $$c$$
Let, \[D = \left| {\begin{array}{*{20}{c}}
{a + b + c}&{a + b}&a\\
{4a + 3b + 2c}&{3a + 2b}&{2a}\\
{10a + 6b + 3c}&{6a + 3b}&{3a}
\end{array}} \right|\]
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}
{a + b + c}&{a + b}&a\\
{4a + 3b + 2c}&{3a + 2b}&{2a}\\
{10a + 6b + 3c}&{6a + 3b}&{3a}
\end{array}} \right|\]
By $${R_2} \to {R_2} - 2{R_1}$$ and $${R_3} \to {R_3} - 3{R_1},$$ we get:
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{a + b + c}&{a + b}&a\\
{2a + b}&a&0\\
{7a + 3b}&{3a}&0
\end{array}} \right|\]
By $${C_1} \to {C_1} - {C_2}$$ gives:
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
c&{a + b}&a\\
{a + b}&a&0\\
{4a + 3b}&{3a}&0
\end{array}} \right|\]
Again by, $${R_3} \to {R_3} - 3{R_1},$$ we get:
\[D = \left| {\begin{array}{*{20}{c}}
{a + b + c}&{a + b}&a\\
{a + b}&a&0\\
a&0&0
\end{array}} \right|\]
$$ = a\left\{ {0.\left( {a + b} \right) - a.a} \right\}$$
$$ = - {a^3}$$ which is independent of $$b$$ and $$c.$$
178.
Let $$\omega \ne 1$$ be a cube root of unity and $$S$$ be the set of all non-singular matrices of the form \[\left| \begin{array}{l}
1\,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,b\\
\omega \,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,c\\
{\omega ^2}\,\,\,\,\omega \,\,\,\,\,\,\,\,1
\end{array} \right|\] where each of $$a, b$$ and $$c$$ is either \[\omega \] or \[{\omega ^2}\] . Then the number of distinct matrices in the set $$S$$ is
A
2
B
6
C
4
D
8
Answer :
6
For the given matrix to be non - singular
\[\left| \begin{array}{l}
1\,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,b\\
\omega \,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,c\\
{\omega ^2}\,\,\,\,\omega \,\,\,\,\,\,\,\,1
\end{array} \right| \ne 0\]
$$\eqalign{
& \Rightarrow \,\,1 - \left( {a + c} \right)\omega + a\,c\,{\omega ^2} \ne 0 \cr
& \Rightarrow \,\,\left( {1 - a\,\omega } \right)\left( {1 - c\,\omega } \right) \ne 0 \cr} $$
$$ \Rightarrow \,\,a \ne {\omega ^2}\,\,{\text{and }}c \ne {\omega ^2}$$ where $$\omega $$ is complex cube root of unity.
As $$a, b$$ and $$c$$ are complex cube roots of unity
∴ $$a$$ and $$c$$ can take only one value i.e. $$\omega $$ while $$b$$ can take 2 values i.e. $$\omega $$ and $${\omega ^2}.$$
∴ Total number of distinct matrices $$ = 1 \times 1 \times 2 = 2$$
180.
If \[A = \left[ {\begin{array}{*{20}{c}}
0&1&3\\
1&2&3\\
3&a&1
\end{array}} \right]\] and \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\
{ - 4}&3&c\\
{\frac{5}{2}}&{ - \frac{3}{2}}&{\frac{1}{2}}
\end{array}} \right],\] then the value of $$a + c$$ is equal to