Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

201. If \[A = \left[ {\begin{array}{*{20}{c}} \alpha &0 \\ 1&1 \end{array}} \right]\]   and \[B = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 5&1 \end{array}} \right]\]   such that $${A^2} = B$$   then $$\alpha $$ is

A $$1$$
B $$- 1$$
C $$4$$
D None of these
Answer :   None of these

202. If \[\vartriangle \left( x \right) = \left| {\begin{array}{*{20}{c}} 1&{\cos x}&{1 - \cos x} \\ {1 + \sin x}&{\cos x}&{1 + \sin x - \cos x} \\ {\sin x}&{\sin x}&1 \end{array}} \right|\]         then $$\int\limits_0^{\frac{\pi }{2}} {\vartriangle \left( x \right)dx} $$   is equal to

A $$\frac{1}{4}$$
B $$\frac{1}{2}$$
C $$0$$
D $$ - \frac{1}{2}$$
Answer :   $$ - \frac{1}{2}$$

203. \[A = \left[ \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,0\\ 0\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,1\\ 0\,\,\,\,\, - 2\,\,\,\,\,\,\,\,4 \end{array} \right]\,{\rm{and }}\,\,I = \left[ \begin{array} \,\,1\,\,\,\,\,\,\,0\,\,\,\,\,\,\,0\\ 0\,\,\,\,\,\,\,1\,\,\,\,\,\,\,0\\ 0\,\,\,\,\,\,\,0\,\,\,\,\,\,\,1 \end{array} \right]\,{\rm{and}}\]          $${A^{ - 1}} = \left[ {\frac{1}{6}\left( {{A^2} + cA + dI} \right)} \right],$$      then the value of $$c$$ and $$d$$ are

A $$(- 6, - 11)$$
B $$(6, 11)$$
C $$(- 6, 11)$$
D $$(6, - 11)$$
Answer :   $$(- 6, 11)$$

204. If $$A$$ is a square matrix such that $$A^2 = I$$  where $$I$$ is the identity matrix, then what is $$A^{–1}$$ equal to ?

A $$A + 1$$
B Null matrix
C $$A$$
D Transpose of $$A$$
Answer :   $$A$$

205. If the system of linear equations $$x + 2ay + az = 0 ; x + 3by + bz = 0 ; x + 4cy + cz = 0$$           has a non - zero solution, then $$a, b, c.$$

A satisfy $$a + 2b + 3c = 0$$
B are in A.P.
C are in G.P.
D are in H.P.
Answer :   are in H.P.

206. If $$a > 0, b > 0, c > 0$$     are respectively the $$p^{th}, q^{th}, r^{th}$$   terms of G.P., then the value of the determinant \[\left| {\begin{array}{*{20}{c}} {\log a}&p&1\\ {\log b}&q&1\\ {\log c}&r&1 \end{array}} \right|\]   is

A $$0$$
B $$1$$
C $$ - 1$$
D None of these
Answer :   $$0$$

207. \[A = \left| {\begin{array}{*{20}{c}} {2a}&{3r}&x\\ {4b}&{6s}&{2y}\\ { - 2c}&{ - 3t}&{ - z} \end{array}} \right| = \lambda \left| {\begin{array}{*{20}{c}} a&r&x\\ b&s&y\\ c&t&z \end{array}} \right|,\]        then what is the value of $$\lambda \,?$$

A $$12$$
B $$ - 12$$
C $$7$$
D $$ - 7$$
Answer :   $$ - 12$$

208. If $$\left[ {\,\,} \right]$$ denotes the greatest integer less than or equal to the real number under consideration and $$ - 1 \leqslant x < 0;0 \leqslant y < 1;1 \leqslant z < 2,$$       then the value of the determinant \[\left| {\begin{array}{*{20}{c}} {\left[ x \right] + 1}&{\left[ y \right]}&{\left[ z \right]}\\ {\left[ x \right]}&{\left[ y \right] + 1}&{\left[ z \right]}\\ {\left[ x \right]}&{\left[ y \right]}&{\left[ z \right] + 1} \end{array}} \right|\]      is

A $$\left[ z \right]$$
B $$\left[ y \right]$$
C $$\left[ x \right]$$
D None of these
Answer :   $$\left[ z \right]$$

209. If \[{\vartriangle _1} = \left| {\begin{array}{*{20}{c}} {10}&4&3 \\ {17}&7&4 \\ 4&{ - 5}&7 \end{array}} \right|,{\vartriangle _2} = \left| {\begin{array}{*{20}{c}} 4&{x + 5}&3 \\ 7&{x + 12}&4 \\ { - 5}&{x - 1}&7 \end{array}} \right|\]         such that $${\vartriangle _1} + {\vartriangle _2} = 0$$   then

A $$x = 5$$
B $$x$$ has no real value
C $$x = 0$$
D None of these
Answer :   $$x = 5$$

210. If $$\alpha ,\beta ,\gamma \in R,$$   then the determinant \[\Delta = \left| {\begin{array}{*{20}{c}} {{{\left( {{e^{i\alpha }} + {e^{ - i\alpha }}} \right)}^2}}&{{{\left( {{e^{i\alpha }} - {e^{ - i\alpha }}} \right)}^2}}&4\\ {{{\left( {{e^{i\beta }} + {e^{ - i\beta }}} \right)}^2}}&{{{\left( {{e^{i\beta }} - {e^{ - i\beta }}} \right)}^2}}&4\\ {{{\left( {{e^{i\gamma }} + {e^{ - i\gamma }}} \right)}^2}}&{{{\left( {{e^{i\gamma }} - {e^{ - i\gamma }}} \right)}^2}}&4 \end{array}} \right|\]        is

A independent of $$\alpha ,\beta $$  and $$\gamma $$
B dependent on $$\alpha ,\beta $$  and $$\gamma $$
C independent of $$\alpha ,\beta $$  only
D independent of $$\alpha ,\gamma $$  only
Answer :   independent of $$\alpha ,\beta $$  and $$\gamma $$