Quadratic Equation MCQ Questions & Answers in Algebra | Maths
Learn Quadratic Equation MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
1.
If the roots of the equation $$b{x^2} + cx + a = 0$$ be imaginary, then for all real values of $$x,$$ the expression $$3{b^2}{x^2} + 6bcx + 2{c^2}$$ is
2.
Let $$a, b, c$$ be three real numbers such that $$2a + 3b + 6c = 0.$$ Then the quadratic equation $$a{x^2} + bx + c = 0$$ has
A
imaginary roots
B
at least one root in $$(0, 1)$$
C
at least one root in $$(- 1, 0)$$
D
both roots in $$(1, 2)$$
Answer :
at least one root in $$(0, 1)$$
Take the equation $$2a{x^3} + 3b{x^2} + 6cx = 0.$$ Clearly, $$x = 0, 1$$ are two roots. Observe that $$a{x^2} + bx + c = 0$$ is the derived equation. So, one root lies between 0 and 1.
3.
The real number $$k$$ for which the equation, $$2{x^3} + 3x + k = 0$$ has two distinct real roots in [0, 1]
A
lies between 1 and 2
B
lies between 2 and 3
C
lies between $$- 1$$ and 2
D
does not exist.
Answer :
does not exist.
$$\eqalign{
& f\left( x \right) = 2{x^3} + 3x + k \cr
& f'\left( x \right) = 6{x^2} + 3 > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\forall \,x \in R\,\,\left( {\because \,\,{x^2} > 0} \right) \cr} $$
$$ \Rightarrow \,\,f\left( x \right)$$ is strictly increasing function
$$ \Rightarrow \,\,f\left( x \right) = 0$$ as only one real root, so two roots are not possible.
4.
The number of real solutions of the equation $$\sin \left( {{e^x}} \right) = {5^x} + {5^{ - x}}$$ is
For, $$x \geqslant - 2,{x^2} - x - 2 + x > 0$$
$$\eqalign{
& \Rightarrow {x^2} > 2 \cr
& \Rightarrow x \in \left( { - \infty , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right) \cr
& \Rightarrow x \in \left[ { - 2, - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right)\,\,{\text{For, }}x < - 2 \cr
& {x^2} + x + 2 + x > 0{\text{ or }}{x^2} + 2x + 2 > 0 \cr} $$
which is true for all $$x.$$
Hence, $$x \in \left( { - \infty , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right)$$
6.
The real roots of the equation $${x^2} + 5\left| x \right| + 4 = 0$$ are
A
$$\left\{ { - 1, - 4} \right\}$$
B
$$\left\{ { 1, 4} \right\}$$
C
$$\left\{ { - 4, 4} \right\}$$
D
None of these
Answer :
None of these
Case 1 : $$x \geqslant 0$$
∴ the equation becomes $$x^2 + 5x + 4 =0$$ or $$x = - 1, - 4$$ but $$x \geqslant 0$$
∴ both values, non admissible : Case 2 : $$x \leqslant 0$$
The equation becomes $$x^2 - 5x + 4 = 0$$ or $$x = 1, 4$$ both values are non admissible
∴ No real roots. Alternatively, since $${x^2} \geqslant 0;\left| x \right| \geqslant 0$$
$$\eqalign{
& \therefore {x^2} + \left| x \right| + 4 > 0{\text{ for all }}x \in {\bf{R}} \cr
& \therefore {x^2} + \left| x \right| + 4 \ne 0{\text{ for any }}x \in {\bf{R}} \cr} $$
7.
If the roots of the equations $$px^2 + 2qx + r = 0$$ and $$q{x^2} - 2\sqrt {pr} x + q = 0$$ be real, then
A
$$p = q$$
B
$$q^2 = pr$$
C
$$p^2 = qr$$
D
$$r^2 = pr$$
Answer :
$$q^2 = pr$$
Consider both equations
$$\eqalign{
& p{x^2} + 2qx + r = 0\,\,\,\,\,.....\left( {\text{i}} \right) \cr
& {\text{and, }}q{x^2} - 2\sqrt {pr} .x + q = 0\,\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Since, both the equations are quadratic and have real roots, therefore from equation (i), we have
$$\eqalign{
& \therefore 4{q^2} - 4pr \geqslant 0\left( {{\text{using discriminant}}} \right) \cr
& \Rightarrow {q^2} \geqslant pr\,\,\,\,.....\left( {{\text{iii}}} \right) \cr} $$
and from second equation $$4pr - 4{q^2} \geqslant 0$$
$$ \Rightarrow pr \geqslant {q^2}\,\,\,.....\left( {{\text{iv}}} \right)$$
From equations (iii) and (iv) we get, $$q^2 = pr.$$
8.
If $$a, b, c$$ are in H.P. then the expression $$a\left( {b - c} \right){x^2} + b\left( {c - a} \right)x + c\left( {a - b} \right)$$
A
has real and distinct factors
B
is a perfect square
C
has no real factor
D
None of these
Answer :
is a perfect square
As $$a\left( {b - c} \right) + b\left( {c - a} \right) + c\left( {a - b} \right) = 0,x = 1$$ is a root of the corresponding equation. The other root of the equation
$$ = \frac{{c\left( {a - b} \right)}}{{a\left( {b - c} \right)}} = 1$$ because $$a, b, c$$ in H.P. implies $$\frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b},\,{\text{i}}{\text{.e}}{\text{., }}\frac{{a - b}}{a} = \frac{{b - c}}{c}$$
∴ $$x = 1, 1$$ are the roots of the corresponding equation. So, $${\left( {x - 1} \right)^2}$$ is a factor.
9.
The number of real solutions of the equation $${2^{\frac{x}{2}}} + {\left( {\sqrt 2 + 1} \right)^x} = {\left( {5 + 2\sqrt 2 } \right)^{\frac{x}{2}}}$$ is
A
one
B
two
C
four
D
infinite
Answer :
one
$${\left( {\frac{{\sqrt 2 }}{{\sqrt {5 + 2\sqrt 2 } }}} \right)^x} + \left( {\frac{{\sqrt 2 + 1}}{{\sqrt {5 + 2\sqrt 2 } }}} \right) = 1$$ which is of the form
$${\cos ^x}\alpha + {\sin ^x}\alpha = 1;\,\,\,\therefore x = 2.$$
10.
If $$\alpha \in \left( {0,\frac{\pi }{2}} \right){\text{then }}\sqrt {{x^2} + x} + \frac{{{{\tan }^2}\alpha }}{{\sqrt {{x^2} + x} }}$$ is always greater than or equal to