$$6{x^2} - xy - {y^2} - 6x + 8y - 12 = 6\left( {x + \lambda y - 2} \right)\left( {x - \mu y + 1} \right).$$
Equate co-efficients and solve for $$\lambda ,\mu .$$
22.
If the equations $$a{x^2} + bx + c = 0$$ and $$c{x^2} + bx + a = 0,a \ne c$$ have a negative common root then the value of $$a - b + c$$ is
A
0
B
2
C
1
D
None of these
Answer :
0
As the co-efficients are in reverse order, the roots of $$a{x^2} + bx + c = 0$$ are $$\alpha ,\beta ,$$ while the roots of $$c{x^2} + bx + a = 0$$ are $$\frac{1}{\alpha },\frac{1}{\beta }.$$
One negative root is common
$$\eqalign{
& \Rightarrow \,\,\left( {\text{i}} \right)\alpha = \frac{1}{\alpha } < 0;\,{\text{so, }}\alpha = - 1 \cr
& {\text{or, }}\left( {{\text{ii}}} \right)\alpha = \frac{1}{\beta } < 0 \cr
& \Rightarrow \,\,\alpha \beta = 1 \cr
& \Rightarrow \,\,\frac{c}{a} = 1 \cr
& \Rightarrow \,\,c = a\left( {{\text{not possible}}} \right). \cr} $$
23.
If $$a, b, c$$ are non-zero, unequal rational numbers then the roots of the equation $$ab{c^2}{x^2} + \left( {3{a^2} + {b^2}} \right)cx - 6{a^2} - ab + 2{b^2} = 0$$ are
24.
If $$X$$ denotes the set of real numbers $$p$$ for which the equation $${x^2} = p\left( {x + p} \right)$$ has its roots greater than $$p$$ then $$X$$ is equal to
26.
The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$
A
Only one solution
B
Only two solutions
C
Infinite number of solutions
D
None of these
Answer :
None of these
The given equations are
$$\eqalign{
& x + 2y + 2z = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,.....\left( 1 \right) \cr
& {\text{and }}2x + 4y + 4z = 9\,\,\,\,.....\left( 2 \right) \cr
& {\text{Subtracting }}\left( 1 \right) \times \left( 2 \right){\text{from}}\left( 2 \right),{\text{ we get 0}} = {\text{7}} \cr
& \left( {{\text{not possible}}} \right) \cr
& \therefore {\text{ No solution}}{\text{.}} \cr} $$
27.
The equation $$2{\sin ^2}\frac{x}{2} \cdot {\cos ^2}x = x + \frac{1}{x},0 < x \leqslant \frac{\pi }{2}$$ has
A
one real solution
B
no real solution
C
infinitely many real solutions
D
none of these
Answer :
no real solution
$${\sin ^2}\frac{x}{2} \cdot {\cos ^2}x = \frac{{x + \frac{1}{x}}}{2} \geqslant \sqrt {x \cdot \frac{1}{x}} = 1,$$ equality will hold when $$x = \frac{1}{x}.$$
$$\therefore \,\,{\sin^2}\frac{x}{2} \cdot {\cos ^2}x = 1\,\,{\text{and then }}x = \frac{1}{x},\,{\text{i}}{\text{.e}}{\text{., }}x = 1$$ for which the equation is not satisfied.
28.
The number of solutions of the equation $$\left| x \right| = \cos x$$ is
A
one
B
two
C
three
D
zero
Answer :
two
Clearly, there are two points of intersection of $$y = \left| x \right|\,\,{\text{and }}y = \cos x.$$
Hence, there are two real solutions.
29.
The number of real solutions of the equation $${x^2} - 3\left| x \right| + 2 = 0\,\,{\text{is}}$$
A
3
B
2
C
4
D
1
Answer :
4
$$\eqalign{
& {x^2} - 3\left| x \right| + 2 = 0\, \cr
& \Rightarrow \,\,{\left| x \right|^2} - 3\left| x \right| + 2 = 0 \cr
& \left( {\left| x \right| - 2} \right)\left( {\left| x \right| - 1} \right) = 0 \cr
& \left| x \right| = 1,2\,\,{\text{or }}x = \pm 1, \pm 2 \cr
& \therefore \,\,{\text{No of solution}} = 4 \cr} $$
30.
Difference between the corresponding roots of $${x^2} + ax + b = 0\,\,{\text{and }}\,{x^2} + bx + a = 0$$ is same and $$a \ne b,$$ then