62.
The number of integral values of $$a$$ for which $${x^2} - \left( {a - 1} \right)x + 3 = 0$$ has both roots positive and $${x^2} + 3x + 6 - a = 0$$ has both roots negative is
63.
If $$\frac{1}{{2 - \sqrt { - 2} }}$$ is one of the roots of $$ax^2 + bx + c = 0,$$ where $$a, b, c$$ are real, then what are the values of $$a, b, c$$ respectively ?
A
$$6, - 4, 1$$
B
$$4, 6, - 1$$
C
$$3, - 2, 1$$
D
$$6, 4, 1$$
Answer :
$$6, - 4, 1$$
Given quadratic equation is $$ax^2 + bx + c = 0$$ whose one root is $$\frac{1}{{2 - \sqrt { - 2} }}$$
Consider $$\frac{1}{{2 - \sqrt { - 2} }} = \frac{1}{{2 - \sqrt 2 i}} \times \frac{{2 + \sqrt 2 i}}{{2 + \sqrt 2 i}}$$
$$ = \frac{{2 + \sqrt 2 i}}{{4 + 2}} = \frac{{2 + \sqrt 2 i}}{6}$$
∴ Another root will be $$\frac{{2 - \sqrt 2 i}}{6}$$
( ∵ complex roots always occurs in pairs )
Thus, sum of roots $$ = \frac{{2 + \sqrt 2 i}}{6} + \frac{{2 - 2\sqrt 2 i}}{6} = \frac{4}{6}$$
and product of roots $$ = \left( {\frac{{2 + \sqrt 2 i}}{6}} \right)\left( {\frac{{2 - \sqrt 2 i}}{6}} \right) = \frac{{4 + 2}}{{36}} = \frac{1}{6}$$
∴ Required equation is
$$\eqalign{
& {x^2} - \left( {{\text{sum of roots}}} \right)x + \left( {{\text{product of roots}}} \right) = 0 \cr
& {x^2} - \frac{4}{6}x + \frac{1}{6} = 0 \cr
& \Rightarrow 6{x^2} - 4x + 1 = 0 \cr} $$
Thus, the values of $$a, b, c$$ are $$6, - 4, 1$$ respectively.
64.
If $$\alpha ,\beta \in C$$ are the distinct roots, of the equation $${x^2} - x + 1 = 0,$$ then $${\alpha ^{101}} + {\beta ^{107}}$$ is equal to:
65.
If $${x^2} - 2r \cdot {p_r}x + r = 0;r = 1,2,3$$ are three quadratic equations of which each pair has exactly one root common then the number of solutions of the triplet $$\left( {{p_1},{p_2},{p_3}} \right)$$ is
66.
Let $$\alpha \,\,{\text{and }}\beta $$ be the roots of equation $$p{x^2} + qx + r = 0,p \ne 0.$$ If $$p, q, r$$ are in A.P. and $$\frac{1}{\alpha } + \frac{1}{\beta } = 4,$$ then the value of $$\left| {\alpha - \beta } \right|$$ is:
67.
The roots of $$a{x^2} + bx + c = 0,$$ where $$a \ne 0$$ and co-efficients are real, are non-real complex and $$a + c < b.$$ Then
A
$$4a + c > 2b$$
B
$$4a + c < 2b$$
C
$$4a + c = 2b$$
D
None of these
Answer :
$$4a + c < 2b$$
$$\eqalign{
& {b^2} - 4ac < 0\,\,{\text{and }}a + c < b. \cr
& {b^2} - 4ac < 0 \cr} $$
⇒ $$a, c$$ must be of the same sign.
If $$a, c$$ are both positive, $${\left( {a + c} \right)^2} < {b^2}.$$
$$\eqalign{
& \therefore \,\,{b^2} - 4ac < 0 \cr
& \Rightarrow \,\,{\left( {a + c} \right)^2} - 4ac < 0 \cr
& \Rightarrow \,\,{\left( {a - c} \right)^2} < 0\,\,{\text{which is absurd}}{\text{.}} \cr} $$
So $$a, c$$ will both be negative. For example, $$ - {x^2} + 4x - 5 = 0.$$
It satisfies, $$D < 0$$ and $$a + c < b.$$ Also $$4a + c = - 4 - 5 = - 9 < 8 = 2b.$$
Clearly, when $$a, c$$ are negative, $$b$$ must be positive. Otherwise, the
equation becomes one where co-efficients are all positive.
68.
The polynomial $$\left( {a{x^2} + bx + c} \right)\left( {a{x^2} - dx - c} \right),ac \ne 0,$$ has
A
four real zeros
B
at least two real zeros
C
at most two real zeros
D
no real zeros
Answer :
at least two real zeros
$$\eqalign{
& D = {b^2} - 4ac,D' = {d^2} + 4ac \cr
& \Rightarrow \,\,D + D' = {b^2} + {d^2} > 0 \cr} $$
∴ at least one of $$D, D'$$ is positive.
69.
Let $$a, b, c$$ be real numbers, $$a \ne 0.$$ If $$\alpha $$ is a root of $${a^2}{x^2} + bx + c = 0.\,\,\beta $$ is the root of $${a^2}{x^2} - bx - c = 0$$ and $$0 < \alpha < \beta ,$$ then the equation $${a^2}{x^2} + 2bx + 2c = 0$$ has a root $$\gamma $$ that always satisfies
A
$$\gamma = \frac{{\alpha + \beta }}{2}$$
B
$$\gamma = \alpha + \frac{\beta }{2}$$
C
$$\gamma = \alpha $$
D
$$\alpha < \gamma < \beta $$
Answer :
$$\alpha < \gamma < \beta $$
KEY CONCEPT:
If $$f\left( \alpha \right)$$ and $$f\left( \beta \right)$$ are of opposite signs then there must lie a value $$\gamma $$ between $$\alpha $$ and $$\beta $$ such that $$f\left( \gamma \right) = 0.$$
$$a,b,c$$ are real numbers and $$a \ne 0.$$
$$\eqalign{
& {\text{As }}\,\alpha \,\,{\text{is a root of }}\,{a^2}{x^2} + bx + c = 0 \cr
& \therefore \,\,{a^2}{\alpha ^2} + b\alpha + c = 0\,\,\,\,\,\,\,\,\,.....\left( 1 \right) \cr
& {\text{Also }}\beta \,{\text{ is root of }}\,{a^2}{x^2} - bx - c = 0 \cr
& \therefore \,\,{a^2}{\beta ^2} - b\beta - c = 0\,\,\,\,\,\,\,\,.....\left( 2 \right) \cr
& {\text{Now, let}}\,\,f\left( x \right) = {a^2}{x^2} + 2bx + 2c \cr
& {\text{Then}}\,\,f\left( \alpha \right) = {a^2}{\alpha ^2} + 2b\alpha + 2c \cr
& = {a^2}{\alpha ^2} + 2\left( {b\alpha + c} \right) \cr
& = {a^2}{\alpha ^2} + 2\left( { - {a^2}{\alpha ^2}} \right)\,\,\,\,\,\,\,\,\,\,\,\left[ {{\text{Using eq}}{\text{.}}\left( 1 \right)} \right] \cr
& = - {a^2}{\alpha ^2}. \cr
& {\text{and }}\,f\left( \beta \right) = {a^2}{\beta ^2} + 2b\beta + 2c \cr
& = {a^2}{\beta ^2} + 2\left( {b\beta + c} \right) \cr
& = {a^2}{\beta ^2} + 2\left( {{a^2}{\beta ^2}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {{\text{Using eq}}{\text{.}}\left( 2 \right)} \right] \cr
& = 3{a^2}{\beta ^2} > 0. \cr
& {\text{Since }}\,f\left( \alpha \right)\,{\text{and }}f\left( \beta \right)\,{\text{are of opposite signs and }}\gamma {\text{ is a root}} \cr
& {\text{of equation }}\,f\left( x \right) = 0 \cr
& \therefore \,\,\gamma \,\,{\text{must lie between }}\alpha \,\,{\text{and}}\,\,\beta \cr
& {\text{Thus }}\alpha < \gamma < \beta . \cr
& \therefore \,\,\,\left( {\text{D}} \right){\text{is the correct option}}{\text{.}} \cr} $$
70.
If $$a > 1,$$ roots of the equation $$\left( {1 - a} \right){x^2} + 3ax - 1 = 0$$ are