Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths

Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

111. If $$\sin x + \sin y = a$$    and $$\cos x + \cos y = b,$$    then $${\tan ^2}\left( {\frac{{x + y}}{2}} \right) + {\tan ^2}\left( {\frac{{x - y}}{2}} \right)$$      is equal to

A $$\frac{{{a^4} + {b^4} + 4{b^2}}}{{{a^2}{b^2} + {b^4}}}$$
B $$\frac{{{a^4} - {b^4} + 4{b^2}}}{{{a^2}{b^2} + {b^4}}}$$
C $$\frac{{{a^4} - {b^4} + 4{a^2}}}{{{a^2}{b^2} + {a^4}}}$$
D None of the above
Answer :   $$\frac{{{a^4} - {b^4} + 4{b^2}}}{{{a^2}{b^2} + {b^4}}}$$

112. If $$3\sin \theta + 4\cos \theta = 5$$     then the value of $$4\sin \theta - 3\cos \theta $$    is

A 0
B 5
C 1
D None of these
Answer :   0

113. If $$A = {\sin ^2}x + {\cos ^4}x,$$    then for all real $$x$$:

A $$\frac{{13}}{{16}} \leqslant A \leqslant 1$$
B $$1 \leqslant A \leqslant 2$$
C $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
D $$\frac{{3}}{{4}} \leqslant A \leqslant 1$$
Answer :   $$\frac{{3}}{{4}} \leqslant A \leqslant 1$$

114. Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A $$1 \leqslant A \leqslant 2$$
B $$\frac{3}{4} \leqslant A \leqslant 1$$
C $$\frac{13}{16} \leqslant A \leqslant 1$$
D $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Answer :   $$\frac{3}{4} \leqslant A \leqslant 1$$

115. $$ABCD$$  is a trapezium such that $$AB$$  and $$CD$$  are parallel and $${{BC}} \bot {{CD}}{{.}}$$   If $$\angle {{ADB}} = \theta ,$$   $$BC = p$$  and $$CD = q,$$  then $$AB$$  is equal to:

A $$\frac{{\left( {{p^2} + {q^2}} \right)\sin \theta }}{{p\cos \theta + q\sin \theta }}$$
B $$\frac{{{p^2} + {q^2}\cos \theta }}{{p\cos \theta + q\sin \theta }}$$
C $$\frac{{{p^2} + {q^2}\cos \theta }}{{{p^2}\cos \theta + {q^2}\sin \theta }}$$
D $$\frac{{\left( {{p^2} + {q^2}} \right)\sin \theta }}{{{{\left( {p\cos \theta + q\sin \theta } \right)}^2}}}$$
Answer :   $$\frac{{\left( {{p^2} + {q^2}} \right)\sin \theta }}{{p\cos \theta + q\sin \theta }}$$

116. $${\sec ^2}\theta = \frac{{4xy}}{{{{\left( {x + y} \right)}^2}}}$$    is true if and only if

A $$x + y \ne 0$$
B $$x = y,x \ne 0$$
C $$x = y$$
D $$x \ne 0,y \ne 0$$
Answer :   $$x = y,x \ne 0$$

117. What is the value of $$\left( {1 + \cos \frac{\pi }{8}} \right)\left( {1 + \cos \frac{{3\pi }}{8}} \right)\left( {1 + \cos \frac{{5\pi }}{8}} \right)\left( {1 + \cos \frac{{7\pi }}{8}} \right)?$$

A $$\frac{1}{2}$$
B $$\frac{1}{2} + \frac{1}{{2\sqrt 2 }}$$
C $$\frac{1}{2} - \frac{1}{{2\sqrt 2 }}$$
D $$\frac{1}{8}$$
Answer :   $$\frac{1}{8}$$

118. If an angle $$B$$ is complement of an angle $$A,$$ what are the greatest and least values of $$\cos A \cos B$$   respectively ?

A $$0, - \frac{1}{2}$$
B $$\frac{1}{2}, - 1$$
C $$1, 0$$
D $$\frac{1}{2}, - \frac{1}{2}$$
Answer :   $$\frac{1}{2}, - \frac{1}{2}$$

119. What is $$\frac{{\cos 7x - \cos 3x}}{{\sin 7x - 2\sin 5x + \sin 3x}}$$      equal to ?

A $$\tan x$$
B $$\cot x$$
C $$\tan 2x$$
D $$\cot 2x$$
Answer :   $$\cot x$$

120. If $$\frac{{\sin \left( {x + y} \right)}}{{\sin \left( {x - y} \right)}} = \frac{{a + b}}{{a - b}},$$     then what is $$\frac{{\tan x}}{{\tan y}}$$  equal to ?

A $$\frac{b}{a}$$
B $$\frac{a}{b}$$
C $$ab$$
D $$1$$
Answer :   $$\frac{a}{b}$$