121.
The set of all possible values of $$\alpha $$ in $$\left[ { - \pi ,\pi } \right]$$ such that $$\sqrt {\frac{{1 - \sin \alpha }}{{1 + \sin \alpha }}} $$ is equal to $$\sec \alpha - \tan \alpha $$ is
A
$$\left[ {0,\frac{\pi }{2}} \right)$$
B
$$\left[ {0,\frac{\pi }{2}} \right) \cup \left( {\frac{\pi }{2},\pi } \right)$$
C
$$\left[ { - \pi ,0} \right]$$
D
$$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
Answer :
$$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
View Solution
Clearly, $$\alpha \ne \pm \frac{\pi }{2}.$$
$$\eqalign{
& \sec\alpha - \tan\alpha = \frac{{1 - \sin \alpha }}{{\cos \alpha }}\,\,{\text{and}} \cr
& \sqrt {\frac{{1 - \sin \alpha }}{{1 + \sin \alpha }}} = \sqrt {\frac{{{{\left( {1 - \sin \alpha } \right)}^2}}}{{{{\cos }^2}\alpha }}} = \left| {\frac{{1 - \sin \alpha }}{{\cos \alpha }}} \right| = \frac{{1 - \sin \alpha }}{{\left| {\cos \alpha } \right|}}. \cr} $$
Hence, these will be equal if $$\cos\alpha > 0,\,{\text{i}}{\text{.e}}{\text{., }} - \frac{\pi }{2} < \alpha < \frac{\pi }{2}.$$
122.
$$\frac{{\sin x - \sin 3x}}{{{{\sin }^2}x - {{\cos }^2}x}}$$ is equal to
A
$${\sin 2x}$$
B
$${\cos 2x}$$
C
$${\tan 2x}$$
D
None of these
Answer :
None of these
View Solution
$$\eqalign{
& \frac{{\sin x - \sin 3x}}{{{{\sin }^2}x - {{\cos }^2}x}} = \frac{{\sin 3x - \sin x}}{{{{\cos }^2}x - {{\sin }^2}x}} \cr
& = \frac{{2\cos \frac{{3x + x}}{2} \cdot \sin \frac{{3x - x}}{2}}}{{\cos 2x}} = \frac{{2\cos 2x \cdot \sin x}}{{\cos 2x}} \cr
& = 2\sin x \cr} $$
123.
Let $${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\,$$ where $$x \in R\,\,{\text{and }}k \geqslant 1.$$ Then $${f_4}\left( x \right) - {f_6}\left( x \right)\,$$ equals
A
$$\frac{1}{4}$$
B
$$\frac{1}{12}$$
C
$$\frac{1}{6}$$
D
$$\frac{1}{3}$$
Answer :
$$\frac{1}{12}$$
View Solution
Let $${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)$$
Consider
$$\eqalign{
& {f_4}\left( x \right) - {f_6}\left( x \right) = \frac{1}{4}\left( {{{\sin }^4}x + {{\cos }^4}x} \right) - \frac{1}{6}\left( {{{\sin }^6}x + {{\cos }^6}x} \right) \cr
& = \frac{1}{4}\left[ {1 - 2{{\sin }^2}x{{\cos }^2}x} \right] - \frac{1}{6}\left[ {1 - 3{{\sin }^2}x{{\cos }^2}x} \right] \cr
& = \frac{1}{4} - \frac{1}{6} \cr
& = \frac{1}{{12}} \cr} $$
124.
If the solutions for $$\theta $$ from the equation $${\sin ^2}\theta - 2\sin \theta + \lambda = 0$$ lie in \[\begin{array}{*{20}{c}}
\cup \\
{n \in {\Bbb Z}}
\end{array}\left( {2n\pi - \frac{\pi }{6},\overline {2n + 1} \,\pi + \frac{\pi }{6}} \right)\] then the set of possible values of $$\lambda $$ is
A
$$\left( { - \frac{5}{4},1} \right]$$
B
$$\left( { - \infty ,1} \right]$$
C
$$\left( { - \frac{5}{4}, + \infty } \right]$$
D
$$\left\{ 1 \right\}$$
Answer :
$$\left( { - \frac{5}{4},1} \right]$$
View Solution
$$\sin \theta = \frac{{2 \pm \sqrt {4 - 4\lambda } }}{2} = 1 \pm \sqrt {1 - \lambda } .$$ For real values, $$1 - \lambda \geqslant 0,\,\,{\text{i}}{\text{.e}}{\text{., }}\lambda \leqslant 1.$$
As $$ - 1 \leqslant \sin\theta \leqslant 1,\sin\theta = 1 - \sqrt {1 - \lambda } .$$
From the question, $$\sin\theta > - \frac{1}{2}.\,{\text{Thus }} - \frac{1}{2} < 1 - \sqrt {1 - \lambda } \leqslant 1$$
$$\eqalign{
& {\text{or, }} - \frac{3}{2} < - \sqrt {1 - \lambda } \leqslant 0 \cr
& \Rightarrow \,\,\sqrt {1 - \lambda } < \frac{3}{2} \cr
& \Rightarrow \,\,1 - \lambda < \frac{9}{4} \cr
& \Rightarrow \,\,\lambda > - \frac{5}{4}. \cr} $$
125.
The value of $$\frac{{\sin 8x + 7\sin 6x + 18\sin 4x + 12\sin 2x}}{{\sin 7x + 6\sin 5x + 12\sin 3x}}$$ is equal to
A
$$2 \cos x$$
B
$$\cos x$$
C
$$2 \sin x$$
D
$$\sin x$$
Answer :
$$2 \cos x$$
View Solution
Numerator of given expression
$$\eqalign{
& = \left( {\sin 8x + \sin 6x} \right) + 6\left( {\sin 6x + \sin 4x} \right) + 12\left( {\sin 4x + \sin 2x} \right) \cr
& = 2\sin 7x\cos x + 12\sin 5x\cos x + 24\sin 3x\cos x \cr
& = 2\cos x\left( {\sin 7x + 6\sin 5x + 12\sin 3x} \right) \cr} $$
Hence, given expression
$$ = \frac{{2\cos x\left( {\sin 7x + 6\sin 5x + 12\sin 3x} \right)}}{{\left( {\sin 7x + 6\sin 5x + 12\sin 3x} \right)}} = 2\cos x$$
126.
Period of the function $$\left| {{{\sin }^3}\frac{x}{2}} \right| + \left| {{{\cos }^5}\frac{x}{5}} \right|{\text{ is :}}$$
A
$$2\pi $$
B
$$10\pi $$
C
$$8\pi $$
D
$$5\pi $$
Answer :
$$10\pi $$
View Solution
$$\eqalign{
& \Rightarrow {\text{Period of}}\,\,\sin x = 2\pi \cr
& \Rightarrow {\text{Period of}}\,\,{\sin ^3}x = 2\pi \cr
& {\text{Period of}}\,\,\left| {{{\sin }^3}x} \right| = \pi \cr
& \Rightarrow {\text{Period of}}\,\,\left| {{{\sin }^3}\frac{x}{2}} \right| = 2\pi \cr
& {\text{Period of}}\,\,{\cos ^5}x = 2\pi \cr
& \Rightarrow {\text{Period of}}\,\,\left| {{{\cos }^5}x} \right| = \pi \cr
& \Rightarrow {\text{Period of}}\,\,\left| {{{\cos }^5}\frac{x}{5}} \right| = 5\pi \cr} $$
Thus required period $$ = {\text{LCM of }}2\pi \,\,\& \,\,5\pi = 10\pi $$
127.
The value of $$\cos {9^ \circ } - \sin{9^ \circ }$$ is
A
$$ - \frac{{\sqrt {5 - \sqrt 5 } }}{2}$$
B
$$\frac{{5 + \sqrt 5 }}{4}$$
C
$$\frac{1}{2}\sqrt {5 - \sqrt 5 } $$
D
None of these
Answer :
$$\frac{1}{2}\sqrt {5 - \sqrt 5 } $$
View Solution
$$\eqalign{
& {\left( {\cos {9^ \circ } - \sin{9^ \circ }} \right)^2} = 1 - \sin {18^ \circ } \cr
& {\left( {\cos {9^ \circ } - \sin{9^ \circ }} \right)^2} = 1 - \frac{{\sqrt 5 - 1}}{4} = \frac{{5 - \sqrt 5 }}{4};\,{\text{also }}\cos {9^ \circ } > \sin{9^ \circ }. \cr} $$
128.
If $$\tan \theta + \tan \left( {\theta + \frac{\pi }{3}} \right) + \tan \left( {\theta - \frac{\pi }{3}} \right) = k\tan 3\theta $$ then $$k$$ is equal to
A
$$1$$
B
$$3$$
C
$${\frac{1}{3}}$$
D
None of these
Answer :
$$3$$
View Solution
$$\eqalign{
& {\text{L}}{\text{.H}}{\text{.S}} = \tan \theta + \frac{{\tan \theta + \sqrt 3 }}{{1 - \sqrt 3 \tan \theta }} + \frac{{\tan \theta - \sqrt 3 }}{{1 + \sqrt 3 \tan \theta }} \cr
& {\text{L}}{\text{.H}}{\text{.S}} = \frac{{\left\{ {\tan \theta - 3{{\tan }^3}\theta + \left( {\tan \theta + \sqrt 3 } \right)\left( {1 + \sqrt 3 \tan \theta } \right) + \left( {\tan \theta - \sqrt 3 } \right)\left( {1 - \sqrt 3 \tan \theta } \right)} \right\}}}{{1 - 3{{\tan }^2}\theta }} \cr
& {\text{L}}{\text{.H}}{\text{.S}} = \frac{{3\left( {3\tan \theta - {{\tan }^3}\theta } \right)}}{{1 - 3{{\tan }^2}\theta }} = 3\tan 3\theta ; \cr
& \therefore \,\,\,\,k = 3. \cr} $$
129.
The equation $$\left( {\cos p - 1} \right){x^2} + \left( {\cos p} \right)x + \sin p = 0$$ in $$x$$ has real roots. Then the set of values of $$p$$ is
A
$$\left[ {0,2\pi } \right]$$
B
$$\left[ { - \pi ,0} \right]$$
C
$$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$$
D
$$\left[ {0,\pi } \right]$$
Answer :
$$\left[ {0,\pi } \right]$$
View Solution
$$\eqalign{
& D \geqslant 0 \cr
& \Rightarrow \,\,{\cos ^2}p - 4\sin p \cdot \left( {\cos p - 1} \right) \geqslant 0 \cr
& {\text{or, }}{\cos ^2}p + 4\sin p\left( {1 - \cos p} \right) \geqslant 0\,\,\,\,\,\,\,.....\left( 1 \right) \cr} $$
$${\text{As }}{\cos ^2}p \geqslant 0\,\,{\text{and }}1 - \cos p \geqslant 0,\left( 1 \right)$$ will hold for all $$\sin p \geqslant 0.\,{\text{So, }}p \in \left[ {0,\pi } \right].$$
130.
The value of $${\tan ^2}\theta \,{\sec ^2}\theta \left( {{{\cot }^2}\theta - {{\cos }^2}\theta } \right)$$ is
A
$$0$$
B
$$1$$
C
$$ - 1$$
D
$$\frac{1}{2}$$
Answer :
$$1$$
View Solution
$$\eqalign{
& {\tan ^2}\theta \,{\sec ^2}\theta \left( {{{\cot }^2}\theta - {{\cos }^2}\theta } \right) \cr
& = {\sec ^2}\theta \left( {{{\tan }^2}\theta \,{{\cot }^2}\theta - {{\tan }^2}\theta \,{{\cos }^2}\theta } \right) \cr
& = {\sec ^2}\theta \left( {1 - \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}{{\cos }^2}\theta } \right) = {\sec ^2}\theta \left( {1 - {{\sin }^2}\theta } \right) \cr
& = {\sec ^2}\theta \cdot {\cos ^2}\theta = 1 \cr} $$