Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths

Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

71. The value of $${\cos ^2}{10^ \circ } - \cos {10^ \circ }\cos {50^ \circ } + {\cos ^2}{50^ \circ }$$       is:

A $$\frac{3}{4} + \cos {20^ \circ }$$
B $$\frac{3}{4}$$
C $$\frac{3}{2}\left( {1 + \cos {{20}^ \circ }} \right)$$
D $$\frac{3}{2}$$
Answer :   $$\frac{3}{4}$$

72. $${\left( {1 - \sin A + \cos A} \right)^2}$$     is equal to

A $$2\left( {1 - \cos A} \right)\left( {1 + \sin A} \right)$$
B $$2\left( {1 - \sin A} \right)\left( {1 + \cos A} \right)$$
C $$2\left( {1 - \cos A} \right)\left( {1 - \sin A} \right)$$
D None of these
Answer :   $$2\left( {1 - \sin A} \right)\left( {1 + \cos A} \right)$$

73. Which pairs of function is identical ?

A $$f\left( x \right) = \sqrt {{x^2}} ,g\left( x \right) = x$$
B $$f\left( x \right) = {\sin ^2}x + {\cos ^2}x,g\left( x \right) = 1$$
C $$f\left( x \right) = \frac{x}{x},g\left( x \right) = 1$$
D None of these
Answer :   $$f\left( x \right) = {\sin ^2}x + {\cos ^2}x,g\left( x \right) = 1$$

74. If $$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$$         then

A $$A, B, C$$   must be angles of a triangle
B the sum of any two of $$A, B, C$$   is equal to the third
C $$A + B + C$$   must be an integral multiple of $$\pi $$
D None of these
Answer :   $$A + B + C$$   must be an integral multiple of $$\pi $$

75. If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D None of these
Answer :   $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$

76. If $$\cos \alpha = \frac{1}{2}\left( {x + \frac{1}{x}} \right),\cos \beta = \frac{1}{2}\left( {y + \frac{1}{y}} \right)$$        then $$\cos \left( {\alpha - \beta } \right)$$   is equal to

A $$\frac{x}{y} + \frac{y}{x}$$
B $${xy + \frac{1}{{xy}}}$$
C $$\frac{1}{2}\left( {\frac{x}{y} + \frac{y}{x}} \right)$$
D None of these
Answer :   $$\frac{1}{2}\left( {\frac{x}{y} + \frac{y}{x}} \right)$$

77. In a $$\Delta PQR,$$  If $$3\sin P + 4\cos Q = 6$$     and $$4\sin Q + 3\cos P = 1$$     then the angle $$R$$ is equal to:

A $$\frac{{5\pi }}{6}$$
B $$\frac{{\pi }}{6}$$
C $$\frac{{\pi }}{4}$$
D $$\frac{{3\pi }}{4}$$
Answer :   $$\frac{{\pi }}{6}$$

78. The maximum value of $$\left( {\cot \,{\alpha _1}} \right).\left( {\cot \,{\alpha _2}} \right)\,.....\,\left( {\cot \,{\alpha _n}} \right),$$   ;   under the restrictions $$0 \leqslant {\alpha _1},{\alpha _2},.....,{\alpha _n} \leqslant \frac{\pi }{2}\,{\text{and}}$$      $$\left( {\cot \,{\alpha _1}} \right).\left( {\cot \,{\alpha _2}} \right)\,.....\,\left( {\cot \,{\alpha _n}} \right) = 1$$        is

A $$\frac{1}{{{2^{\frac{n}{2}}}}}$$
B $$\frac{1}{{{2^n}}}$$
C $$\frac{1}{{2n}}$$
D 1
Answer :   $$\frac{1}{{{2^{\frac{n}{2}}}}}$$

79. If $$\cos 5\theta = a\,{\cos ^5}\theta + b\,{\cos ^3}\theta + c\cos \theta $$       then $$c$$ is equal to

A $$- 5$$
B $$1$$
C $$5$$
D None of these
Answer :   $$5$$

80. The equation $$\cos \theta = x + \frac{p}{x}$$   for all $$x \in R$$  has a real solution for $$\theta .$$ Then

A $$p = \frac{1}{2}$$
B $$p \leqslant \frac{1}{4}$$
C $$p \geqslant \frac{1}{4}$$
D None of these
Answer :   $$p \leqslant \frac{1}{4}$$