Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths
Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
The value of $${\cos ^2}{10^ \circ } - \cos {10^ \circ }\cos {50^ \circ } + {\cos ^2}{50^ \circ }$$ is:
A
$$\frac{3}{4} + \cos {20^ \circ }$$
B
$$\frac{3}{4}$$
C
$$\frac{3}{2}\left( {1 + \cos {{20}^ \circ }} \right)$$
$$\eqalign{
& {\left( {1 - \sin A + \cos A} \right)^2} \cr
& = 1 + {\sin ^2}A + {\cos ^2}A - 2\sin A - 2\sin A \cdot \cos A + 2\cos A \cr
& = 2 - 2\sin A - 2\sin A\cos A + 2\cos A \cr
& = 2\left( {1 - \sin A} \right) + 2\cos A\left( {1 - \sin A} \right) \cr
& = 2\left( {1 + \cos A} \right)\left( {1 - \sin A} \right) \cr} $$
73.
Which pairs of function is identical ?
A
$$f\left( x \right) = \sqrt {{x^2}} ,g\left( x \right) = x$$
B
$$f\left( x \right) = {\sin ^2}x + {\cos ^2}x,g\left( x \right) = 1$$
C
$$f\left( x \right) = \frac{x}{x},g\left( x \right) = 1$$
D
None of these
Answer :
$$f\left( x \right) = {\sin ^2}x + {\cos ^2}x,g\left( x \right) = 1$$
For checking equal function
$$\left( A \right)$$ Domain of $$f\left( x \right) = R$$ but range $$ = \left[ {0,\infty } \right)$$
Domain of $$g\left( x \right) = R,$$ range $$ = R$$
Domain same but range is different so it is not an equal function.
$$\left( B \right)$$ Domain of $$f\left( x \right) = R$$
Domain of $$g\left( x \right) = R$$
Domain and range both same so it is an equal function.
$$\left( C \right)$$ Domain of $$f\left( x \right) = R - \left\{ 0 \right\}$$
Domain of $$g\left( x \right) = R$$
Not equal function as domain is different.
74.
If $$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$$ then
A
$$A, B, C$$ must be angles of a triangle
B
the sum of any two of $$A, B, C$$ is equal to the third
C
$$A + B + C$$ must be an integral multiple of $$\pi $$
D
None of these
Answer :
$$A + B + C$$ must be an integral multiple of $$\pi $$
$$\eqalign{
& \tan \left( {A + B + C} \right) = 0\,\left( {{\text{from the question}}} \right) \cr
& \therefore \,\,A + B + C = n\pi . \cr} $$