Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths

Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

81. If $$A$$ and $$B$$ are positive acute angles satisfying $$3\,{\cos ^2}A + 2\,{\cos ^2}B = 4{\text{ and }}\frac{{3\sin A}}{{\sin B}} = \frac{{2\cos B}}{{\cos A}}.$$         Then the value of $$A + 2B$$  is equal to :

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{2}$$

82. If $$x = \alpha ,\beta $$   satisfies both the equations $${\cos ^2}x + a\cos x + b = 0$$     and $${\sin ^2}x + p\sin x + q = 0$$     then the relation between $$a, b, p$$  and $$q$$ is

A $$1 + b + {a^2} = {p^2} - q - 1$$
B $${a^2} + {b^2} = {p^2} + {q^2}$$
C $$2\left( {b + q} \right) = {a^2} + {p^2} - 2$$
D None of these
Answer :   $$2\left( {b + q} \right) = {a^2} + {p^2} - 2$$

83. The equation $$\left( {\cos p - 1} \right){x^2} + \left( {\cos p} \right)x + \sin p = 0$$        In the variable $$x,$$ has real roots. Then $$p$$ can take any value in the interval

A $$\left( {0,2\pi } \right)$$
B $$\left( { - \pi ,0} \right)$$
C $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
D $$\left( {0,\pi } \right)$$
Answer :   $$\left( {0,\pi } \right)$$

84. If $$\left( {1 + \sin \alpha } \right)\left( {1 + \sin \beta } \right)\left( {1 + \sin \gamma } \right) = \left( {1 - \sin \alpha } \right)\left( {1 - \sin \beta } \right)\left( {1 - \sin \gamma } \right) = k,$$              then $$k$$ is equal to :

A $$2 \cos \alpha \cos \beta \cos \gamma $$
B $$ - \cos \alpha \cos \beta \cos \gamma $$
C $$ + \cos \alpha \cos \beta \cos \gamma $$
D $$ + 2 \sin \alpha \sin \beta \sin \gamma $$
Answer :   $$ + \cos \alpha \cos \beta \cos \gamma $$

85. What is $$\frac{{1 - \tan {2^ \circ }\cot {{62}^ \circ }}}{{\tan {{152}^ \circ } - \cot {{88}^ \circ }}}$$     equal to ?

A $$ \sqrt 3 $$
B $$ - \sqrt 3 $$
C $$ {\sqrt 2} - 1$$
D $$1 - \sqrt 2 $$
Answer :   $$ - \sqrt 3 $$

86. If $$\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = k\sin 3A,$$         then what is $$k$$ equal to ?

A $$\frac{1}{4}$$
B $$\frac{1}{2}$$
C $$1$$
D $$4$$
Answer :   $$\frac{1}{4}$$

87. The number of distinct real roots of \[\left| {\begin{array}{*{20}{c}} {\sin x}&{\cos x}&{\cos x}\\ {\cos x}&{\sin x}&{\cos x}\\ {\cos x}&{\cos x}&{\sin x} \end{array}} \right| = 0\]      in the interval $$ - \frac{\pi }{4} \leqslant x \leqslant \frac{\pi }{4}$$    is

A 0
B 2
C 1
D 3
Answer :   1

88. If $$\cos 2x + 2\cos x = 1$$    then $${\sin ^2}x\left( {2 - {{\cos }^2}x} \right)$$    is equal to

A $$1$$
B $$ - 1$$
C $$ - \sqrt 5 $$
D $$ \sqrt 5 $$
Answer :   $$1$$

89. $${\sec ^2}\theta = \frac{{4xy}}{{{{\left( {x + y} \right)}^2}}},$$    where $$x \in R,y \in R,$$   is true if and only if

A $$x + y \ne 0$$
B $$x = y,x \ne 0$$
C $$x = y$$
D $$x \ne 0,y \ne 0$$
Answer :   $$x = y,x \ne 0$$

90. If $$\tan \theta = a \ne 0,\tan 2\theta = b \ne 0$$      and $$\tan \theta + \tan 2\theta = \tan 3\theta $$     then

A $$a = b$$
B $$ab = 1$$
C $$a + b = 0$$
D $$b = 2a$$
Answer :   $$a + b = 0$$