2.
Let $$A$$ and $$B$$ be two symmetric matrices of order 3. Statement - 1 : $$A(BA)$$ and $$(AB)A$$ are symmetric matrices. Statement - 2 : $$AB$$ is symmetric matrix if matrix multiplication of $$A$$ with $$B$$ is commutative.
A
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B
Statement - 1 is true, Statement - 2 is false.
C
Statement - 1 is false, Statement - 2 is true.
D
Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
Answer :
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
$$\eqalign{
& \therefore \,\,A' = A,\,\,B' = B \cr
& {\text{Now }}\left( {A\left( {BA} \right)} \right)' = \left( {BA} \right)'A' \cr
& = \left( {A'B'} \right)A' = \left( {AB} \right)A = A\left( {BA} \right) \cr
& {\text{Similarly}}\,\,\left( {\left( {AB} \right)A} \right)' = \left( {AB} \right)A \cr} $$
So, $$A(BA)$$ and $$(AB)A$$ are symmetric matrices.
Again $$(AB)' = B'A’ = BA$$
Now if $$BA = AB,$$ then $$AB$$ is symmetric matrix.
3.
If \[f\left( x \right) = \left[ {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x}&0 \\
{\sin x}&{\cos x}&0 \\
0&0&1
\end{array}} \right]\] then $$f\left( {x + y} \right)$$ is equal to
A
$$f\left( x \right) + f\left( y \right)$$
B
$$f\left( x \right) - f\left( y \right)$$
C
$$f\left( x \right) \cdot f\left( y \right)$$
D
None of these
Answer :
$$f\left( x \right) \cdot f\left( y \right)$$
4.
If $${A_1}{B_1}{C_1},{A_2}{B_2}{C_2}$$ and $${A_3}{B_3}{C_3}$$ are three digit numbers, each of which is divisible by $$k,$$ then \[\Delta = \left| {\begin{array}{*{20}{c}}
{{A_1}}&{{B_1}}&{{C_1}}\\
{{A_2}}&{{B_2}}&{{C_2}}\\
{{A_3}}&{{B_3}}&{{C_3}}
\end{array}} \right|\] is
6.
If $$a \ne p,b \ne q,c \ne r$$ and \[\left| {\begin{array}{*{20}{c}}
p&b&c\\
a&q&c\\
a&b&r
\end{array}} \right| = 0\] then the value of $$\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}}$$ is equal to
8.
If \[A = \left[ {\begin{array}{*{20}{c}}
1&2\\
0&3
\end{array}} \right]\] is a $$2 \times 2$$ matrix and $$f\left( x \right) = {x^2} - x + 2$$ is a polynomial, then what is $$f\left( A \right) \,? $$
A
\[\left[ {\begin{array}{*{20}{c}}
1&7\\
1&7
\end{array}} \right]\]
B
\[\left[ {\begin{array}{*{20}{c}}
2&6\\
0&8
\end{array}} \right]\]
C
\[\left[ {\begin{array}{*{20}{c}}
2&6\\
0&6
\end{array}} \right]\]
D
\[\left[ {\begin{array}{*{20}{c}}
2&6\\
0&7
\end{array}} \right]\]
9.
If $$A = {\left[ {{a_{ij}}} \right]_{n \times n}}$$ be a diagonal matrix with diagonal
element all different and $$B = {\left[ {{a_{ij}}} \right]_{n \times n}}$$ be some
another matrix. Let $$AB = {\left[ {{c_{ij}}} \right]_{n \times n}}$$ then $$c_{ij}$$ is equal to
A
$${a_{jj}}{b_{ij}}$$
B
$${a_{ii}}{b_{ij}}$$
C
$${a_{ij}}{b_{ij}}$$
D
$${a_{ij}}{b_{ji}}$$
Answer :
$${a_{ii}}{b_{ij}}$$
$${c_{ij}} = \sum\limits_{k = 1}^n {{a_{ik}}{b_{kj}}} \,\,\,\left( {{\text{In general}}} \right)$$
and in a diagonal matrix non-diagonal elements are zero
i.e., \[{a_{ij}} = \left\{ \begin{gathered}
0,\,\,{\text{if }}i \ne j \hfill \\
{a_{ii}}{\text{, if }}i = j \hfill \\
\end{gathered} \right.\]
So, $${c_{ij}} = {a_{ii}}{b_{ij}}$$
10.
The values of $$a, b, c$$ if \[\left[ {\begin{array}{*{20}{c}}
0&{2b}&c\\
a&b&{ - c}\\
a&{ - b}&c
\end{array}} \right]\] is orthogonal are