181.
If number of elements is 20 then how many different types of matrices can be formed if number of rows is always even ?
A
3
B
4
C
5
D
6
Answer :
4
View Solution
$$\because 20 = 1 \times 20 = 2 \times 10 = 4 \times 5 = 5 \times 4 = 10 \times 2 = 20 \times 1$$
Out of this number of rows is even so possible cases are $$2 \times 10 , 4 \times 5 , 10 \times 2$$ and $$20 \times 1.$$ So number of matrices are 4.
182.
The value of \[\left| {\begin{array}{*{20}{c}}
{^{10}{C_4}}&{^{10}{C_5}}&{^{11}{C_m}} \\
{^{11}{C_6}}&{^{11}{C_7}}&{^{12}{C_{m + 2}}} \\
{^{12}{C_8}}&{^{12}{C_9}}&{^{13}{C_{m + 4}}}
\end{array}} \right|\] is equal to zero when $$m$$ is
A
6
B
4
C
5
D
None of these
Answer :
5
View Solution
\[{C_2} \to {C_2} + {C_1}\,\,{\text{given }}\vartriangle = \left| {\begin{array}{*{20}{c}}
{^{10}{C_4}}&{^{11}{C_5}}&{^{11}{C_m}} \\
{^{11}{C_6}}&{^{12}{C_7}}&{^{12}{C_{m + 2}}} \\
{^{12}{C_8}}&{^{13}{C_9}}&{^{13}{C_{m + 4}}}
\end{array}} \right|\]
For $$m = 5,{C_2} \equiv {C_3}.$$
183.
If the system of equations $$\lambda {x_1} + {x_2} + {x_3} = 1,{x_1} + \lambda {x_2} + {x_3} = 1,{x_1} + {x_2} + \lambda {x_3} = 1$$ is consistent, then $$\lambda$$ can be
A
$$5$$
B
$$ - \frac{2}{3}$$
C
$$ - 3$$
D
None of these
Answer :
None of these
View Solution
Let \[\Delta = \left| {\begin{array}{*{20}{c}}
\lambda &1&1 \\
1&\lambda &1 \\
1&1&\lambda
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{\lambda + 2}&1&1 \\
{\lambda + 2}&\lambda &1 \\
{\lambda + 2}&1&\lambda
\end{array}} \right|\left[ {{C_1} \to {C_1} + {C_2} + {C_3}} \right]\]
\[ = \left( {\lambda + 2} \right)\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\lambda &1 \\
1&1&\lambda
\end{array}} \right| = \left( {\lambda + 2} \right)\left| {\begin{array}{*{20}{c}}
1&0&0 \\
1&{\lambda - 1}&0 \\
1&0&{\lambda - 1}
\end{array}} \right|\]
$$ = \left( {\lambda + 2} \right){\left( {\lambda - 1} \right)^2}$$ [ using $${{C_2} \to {C_2} - {C_1}}$$ and $${{C_3} \to {C_3} - {C_1}}$$ ]
If $$\Delta = 0,$$ then $$\lambda = - 2{\text{ or }}\lambda = 1.$$
But when $$\lambda = 1,$$ the system of equation becomes $${x_1} + {x_2} + {x_3} = 1$$ which has infinite number of solutions. When $$\lambda = - 2,$$ by adding three equations, we obtain $$0 = 3$$ and thus, the system of equations is inconsistent.
184.
If $${A^2} - A + I = 0,$$ then the inverse of $$A$$ is
A
$$A + I$$
B
$$A$$
C
$$A - I$$
D
$$I - A$$
Answer :
$$I - A$$
View Solution
$$\eqalign{
& {\text{Given }}{A^2} - A + I = 0 \cr
& {A^{ - 1}}{A^2} - {A^{ - 1}}A + {A^{ - 1}}.I = {A^{ - 1}}.0 \cr} $$
(Multiplying $${A^{ - 1}}$$ on both sides)
$$ \Rightarrow \,\,A - 1 + {A^{ - 1}} = 0\,\,{\text{or }}{A^{ - 1}} = 1 - A.$$
185.
Which of the following is/are correct ?
A
$$B'AB$$ is symmetric if $$A$$ is symmetric
B
$$B'AB$$ is skew-symmetric if $$A$$ is symmetric
C
$$B'AB$$ is symmetric if $$A$$ is skew-symmetric
D
None of these
Answer :
$$B'AB$$ is symmetric if $$A$$ is symmetric
View Solution
Let $$A$$ be a symmetric matrix.
Then $$A' = A$$
Now, $$\left( {B'AB} \right)' = B'A'\left( {B'} \right)'.\left[ {\because \left( {AB} \right)' = B'A'} \right]$$
$$\eqalign{
& = B'A'B\left[ {\because \left( {B'} \right)' = B} \right] \cr
& = B'AB\left[ {\because A' = A} \right] \cr} $$
⇒ $$B'AB$$ is a symmetric matrix.
Now, let $$A$$ be a skew-symmetric matrix.
Then, $$A' = - A$$
$$\eqalign{
& \therefore \left( {B'AB} \right)' = B'A'\left( {B'} \right)'\left[ {\because \left( {AB} \right)' = B'A'} \right] \cr
& = B'A'B\left[ {\because \left( {B'} \right)' = B} \right] \cr
& = B'\left( { - A} \right)B\left[ {\because A' = - A} \right] \cr
& = - B'AB \cr} $$
∴ $$B'AB$$ is a skew-symmetric matrix.
186.
If \[A = \left[ {\begin{array}{*{20}{c}}
a&b\\
b&a
\end{array}} \right]\] and \[{A^2} = \left[ {\begin{array}{*{20}{c}}
\alpha &\beta \\
\beta &\alpha
\end{array}} \right],\] then
A
$$\alpha = 2ab,\beta = {a^2} + {b^2}$$
B
$$\alpha = {a^2} + {b^2},\beta = ab$$
C
$$\alpha = {a^2} + {b^2},\beta = 2ab$$
D
$$\alpha = {a^2} + {b^2},\beta = {a^2} - {b^2}$$
Answer :
$$\alpha = {a^2} + {b^2},\beta = 2ab$$
View Solution
\[\begin{array}{l}
{A^2} = \left[ {\begin{array}{*{20}{c}}
\alpha &\beta \\
\beta &\alpha
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
a&b\\
b&a
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
a&b\\
b&a
\end{array}} \right]\\
= \left[ {\begin{array}{*{20}{c}}
{{a^2} + {b^2}}&{2ab}\\
{2ab}&{{a^2} + {b^2}}
\end{array}} \right];\alpha = {a^2} + {b^2};\beta = 2ab
\end{array}\]
187.
The value of \[\left| {\begin{array}{*{20}{c}}
{{a_1}x + {b_1}y}&{{a_2}x + {b_2}y}&{{a_3}x + {b_3}y} \\
{{b_1}x + {a_1}y}&{{b_2}x + {a_2}y}&{{b_3}x + {a_3}y} \\
{{b_1}x + {a_1}}&{{b_2}x + {a_2}}&{{b_3}x + {a_3}}
\end{array}} \right|\] is equal to
A
$${x^2} + {y^2}$$
B
$$0$$
C
$${a_1}{a_2}{a_3}{x^2} + {b_1}{b_2}{b_3}{y^2}$$
D
None of these
Answer :
$$0$$
View Solution
\[\vartriangle = \left| {\begin{array}{*{20}{c}}
{{a_1}x + {b_1}y}&{{a_2}x + {b_2}y}&{{a_3}x + {b_3}y} \\
{{a_1}\left( {y - 1} \right)}&{{a_2}\left( {y - 1} \right)}&{{a_3}\left( {y - 1} \right)} \\
{{b_1}x + {a_1}}&{{b_2}x + {a_2}}&{{b_3}x + {a_3}}
\end{array}} \right|\]
$$\left( {{R_2} \to {R_2} - {R_3}} \right)$$
\[\vartriangle = \left( {y - 1} \right)\left| {\begin{array}{*{20}{c}}
{{b_1}y}&{{b_2}y}&{{b_3}y} \\
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}x + {a_1}}&{{b_2}x + {a_2}}&{{b_3}x + {a_3}}
\end{array}} \right|\]
$$\left( {{R_1} \to {R_1} - x \times {R_2}} \right)$$
\[\vartriangle = \left( {y - 1} \right)y\left| {\begin{array}{*{20}{c}}
{{b_1}}&{{b_2}}&{{b_3}} \\
{{a_1}}&{{a_2}}&{{a_3}} \\
0&0&0
\end{array}} \right|\left( {{\text{Using }}{R_3} \to {R_3} - x \times {R_1} - {R_2}} \right).\]
188.
If $$x, y, z$$ are complex numbers, and \[\Delta = \left| {\begin{array}{*{20}{c}}
0&{ - y}&{ - z}\\
{\bar y}&0&{ - x}\\
{\bar z}&{\bar x}&0
\end{array}} \right|\] then $$\Delta$$ is
A
purely real
B
purely imaginary
C
complex
D
0
Answer :
purely imaginary
View Solution
We have,
\[\bar \Delta = \left| {\begin{array}{*{20}{c}}
0&{ - \bar y}&{ - \bar z}\\
y&0&{ - \bar x}\\
z&x&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&y&z\\
{ - \bar y}&0&x\\
{ - \bar z}&{ - \bar x}&0
\end{array}} \right|\]
[Interchanging rows and columns]
\[ = {\left( { - 1} \right)^3}\left| {\begin{array}{*{20}{c}}
0&{ - y}&{ - z}\\
{\bar y}&0&{ - x}\\
{\bar z}&{\bar x}&0
\end{array}} \right|\]
[Taking $$–1$$ common from each row]
$$\eqalign{
& = - \Delta \cr
& \therefore \bar \Delta + \Delta = 0 \cr
& \Rightarrow 2\operatorname{Re} \left( \Delta \right) = 0 \cr} $$
∴ $$\Delta$$ is purely imaginary.
189.
If \[A = \left[ {\begin{array}{*{20}{c}}
3&2\\
1&4
\end{array}} \right],\] then what is $$A\left( {adj\,A} \right)$$ equal to ?
A
\[\left[ {\begin{array}{*{20}{c}}
0&{10}\\
{10}&0
\end{array}} \right]\]
B
\[\left[ {\begin{array}{*{20}{c}}
{10}&0\\
0&{10}
\end{array}} \right]\]
C
\[\left[ {\begin{array}{*{20}{c}}
1&{10}\\
{10}&1
\end{array}} \right]\]
D
\[\left[ {\begin{array}{*{20}{c}}
{10}&1\\
1&{10}
\end{array}} \right]\]
Answer :
\[\left[ {\begin{array}{*{20}{c}}
{10}&0\\
0&{10}
\end{array}} \right]\]
View Solution
Let, \[A = \left[ {\begin{array}{*{20}{c}}
3&2\\
1&4
\end{array}} \right]\]
We have,
If $$A$$ is a square matrix of order $$n$$ then
$$\eqalign{
& A\left( {{\text{adj}}\,A} \right) = \left| A \right|.{I_n} \cr
& {\text{Here, }}n = 2 \cr
& \therefore \,A\left( {adj\,A} \right) = {I_2}\left| A \right| \cr} $$
\[\begin{array}{l}
= \,\left[ {\begin{array}{*{20}{c}}
1&0\\
0&1
\end{array}} \right]\,\left| {\begin{array}{*{20}{c}}
3&2\\
1&4
\end{array}} \right| = \left[ {\begin{array}{*{20}{c}}
1&0\\
0&1
\end{array}} \right]\left( {12 - 2} \right) = 10\left[ {\begin{array}{*{20}{c}}
1&0\\
0&1
\end{array}} \right]\\
= \,\left[ {\begin{array}{*{20}{c}}
{10}&0\\
0&{10}
\end{array}} \right]
\end{array}\]
190.
If \[\left[ {\begin{array}{*{20}{c}}
1&1\\
0&1
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&2\\
0&1
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&3\\
0&1
\end{array}} \right]......\left[ {\begin{array}{*{20}{c}}
1&{n - 1}\\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{78}\\
0&1
\end{array}} \right],\] then the inverse of \[\left[ {\begin{array}{*{20}{c}}
1&n\\
0&1
\end{array}} \right]\] is:
A
\[\left[ {\begin{array}{*{20}{c}}
1&0\\
{12}&1
\end{array}} \right]\]
B
\[\left[ {\begin{array}{*{20}{c}}
1&{ - 13}\\
0&1
\end{array}} \right]\]
C
\[\left[ {\begin{array}{*{20}{c}}
1&{ - 12}\\
0&1
\end{array}} \right]\]
D
\[\left[ {\begin{array}{*{20}{c}}
1&0\\
{13}&1
\end{array}} \right]\]
Answer :
\[\left[ {\begin{array}{*{20}{c}}
1&{ - 13}\\
0&1
\end{array}} \right]\]
View Solution
\[\begin{array}{l}
\left[ {\begin{array}{*{20}{c}}
1&1\\
0&1
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&2\\
0&1
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&3\\
0&1
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&4\\
0&1
\end{array}} \right]......\left[ {\begin{array}{*{20}{c}}
1&{n - 1}\\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{78}\\
0&1
\end{array}} \right]\\
\Rightarrow \,\,\left[ {\begin{array}{*{20}{c}}
1&{1 + 2 + 3 + ...... + \left( {n - 1} \right)}\\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{78}\\
0&1
\end{array}} \right]\\
\Rightarrow \,\,\frac{{\left( {n - 1} \right)n}}{2} = 78\\
\Rightarrow \,\,{n^2} - n - 15 = 0\\
\Rightarrow \,\,n = 13\\
{\rm{Now, \,the \,matrix }}\left[ {\begin{array}{*{20}{c}}
1&n\\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{13}\\
0&1
\end{array}} \right]
\end{array}\]
Then, the required inverse of
\[\left[ {\begin{array}{*{20}{c}}
1&{13}\\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 13}\\
0&1
\end{array}} \right]\]