Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

181. If number of elements is 20 then how many different types of matrices can be formed if number of rows is always even ?

A 3
B 4
C 5
D 6
Answer :   4

182. The value of \[\left| {\begin{array}{*{20}{c}} {^{10}{C_4}}&{^{10}{C_5}}&{^{11}{C_m}} \\ {^{11}{C_6}}&{^{11}{C_7}}&{^{12}{C_{m + 2}}} \\ {^{12}{C_8}}&{^{12}{C_9}}&{^{13}{C_{m + 4}}} \end{array}} \right|\]     is equal to zero when $$m$$ is

A 6
B 4
C 5
D None of these
Answer :   5

183. If the system of equations $$\lambda {x_1} + {x_2} + {x_3} = 1,{x_1} + \lambda {x_2} + {x_3} = 1,{x_1} + {x_2} + \lambda {x_3} = 1$$           is consistent, then $$\lambda$$ can be

A $$5$$
B $$ - \frac{2}{3}$$
C $$ - 3$$
D None of these
Answer :   None of these

184. If $${A^2} - A + I = 0,$$    then the inverse of $$A$$ is

A $$A + I$$
B $$A$$
C $$A - I$$
D $$I - A$$
Answer :   $$I - A$$

185. Which of the following is/are correct ?

A $$B'AB$$  is symmetric if $$A$$ is symmetric
B $$B'AB$$  is skew-symmetric if $$A$$ is symmetric
C $$B'AB$$  is symmetric if $$A$$ is skew-symmetric
D None of these
Answer :   $$B'AB$$  is symmetric if $$A$$ is symmetric

186. If \[A = \left[ {\begin{array}{*{20}{c}} a&b\\ b&a \end{array}} \right]\]   and \[{A^2} = \left[ {\begin{array}{*{20}{c}} \alpha &\beta \\ \beta &\alpha \end{array}} \right],\]   then

A $$\alpha = 2ab,\beta = {a^2} + {b^2}$$
B $$\alpha = {a^2} + {b^2},\beta = ab$$
C $$\alpha = {a^2} + {b^2},\beta = 2ab$$
D $$\alpha = {a^2} + {b^2},\beta = {a^2} - {b^2}$$
Answer :   $$\alpha = {a^2} + {b^2},\beta = 2ab$$

187. The value of \[\left| {\begin{array}{*{20}{c}} {{a_1}x + {b_1}y}&{{a_2}x + {b_2}y}&{{a_3}x + {b_3}y} \\ {{b_1}x + {a_1}y}&{{b_2}x + {a_2}y}&{{b_3}x + {a_3}y} \\ {{b_1}x + {a_1}}&{{b_2}x + {a_2}}&{{b_3}x + {a_3}} \end{array}} \right|\]       is equal to

A $${x^2} + {y^2}$$
B $$0$$
C $${a_1}{a_2}{a_3}{x^2} + {b_1}{b_2}{b_3}{y^2}$$
D None of these
Answer :   $$0$$

188. If $$x, y, z$$  are complex numbers, and \[\Delta = \left| {\begin{array}{*{20}{c}} 0&{ - y}&{ - z}\\ {\bar y}&0&{ - x}\\ {\bar z}&{\bar x}&0 \end{array}} \right|\]    then $$\Delta$$ is

A purely real
B purely imaginary
C complex
D 0
Answer :   purely imaginary

189. If \[A = \left[ {\begin{array}{*{20}{c}} 3&2\\ 1&4 \end{array}} \right],\]   then what is $$A\left( {adj\,A} \right)$$   equal to ?

A \[\left[ {\begin{array}{*{20}{c}} 0&{10}\\ {10}&0 \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} {10}&0\\ 0&{10} \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} 1&{10}\\ {10}&1 \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} {10}&1\\ 1&{10} \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} {10}&0\\ 0&{10} \end{array}} \right]\]

190. If \[\left[ {\begin{array}{*{20}{c}} 1&1\\ 0&1 \end{array}} \right].\left[ {\begin{array}{*{20}{c}} 1&2\\ 0&1 \end{array}} \right].\left[ {\begin{array}{*{20}{c}} 1&3\\ 0&1 \end{array}} \right]......\left[ {\begin{array}{*{20}{c}} 1&{n - 1}\\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{78}\\ 0&1 \end{array}} \right],\]            then the inverse of \[\left[ {\begin{array}{*{20}{c}} 1&n\\ 0&1 \end{array}} \right]\]   is:

A \[\left[ {\begin{array}{*{20}{c}} 1&0\\ {12}&1 \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} 1&{ - 13}\\ 0&1 \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} 1&{ - 12}\\ 0&1 \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} 1&0\\ {13}&1 \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} 1&{ - 13}\\ 0&1 \end{array}} \right]\]