12.
Given $$a = \frac{x}{{\left( {y - z} \right)}},b = \frac{y}{{\left( {z - x} \right)}}$$ and $$c = \frac{z}{{\left( {x - y} \right)}},$$ where $$x, y$$ and $$z$$ are not all zero, Then the value of $$ab + bc + ca$$
A
$$0$$
B
$$1$$
C
$$ - 1$$
D
None of these
Answer :
$$ - 1$$
$$\eqalign{
& a = \frac{x}{{\left( {y - z} \right)}} \cr
& \Rightarrow \,x - ay + az = 0\,\,\,.....\left( 1 \right) \cr
& b = \frac{y}{{\left( {z - x} \right)}} \cr
& \Rightarrow \,bx + y - bz = 0\,\,\,.....\left( 2 \right) \cr
& c = \frac{z}{{\left( {x - y} \right)}} \cr
& \Rightarrow \, - cx + cy + z = 0\,\,\,.....\left( 3 \right) \cr} $$
As $$x, y, z$$ are not all zero, the above system has a non-trivial
solution so, \[\Delta = \left| {\begin{array}{*{20}{c}}
1&{ - a}&a\\
b&{ - 1}&{ - b}\\
{ - c}&c&1
\end{array}} \right|\]
∴ $$1 + ab + bc + ca = 0$$
13.
Let $$\alpha \,{\text{and }}\beta $$ be the roots of the equation $${x^2} + x + 1 = 0.$$ Then for $$y \ne 0\,\,{\text{in }}R,$$ \[\left| {\begin{array}{*{20}{c}}
{y + 1}&\alpha &\beta \\
\alpha &{y + \beta }&1\\
\beta &1&{y + \alpha }
\end{array}} \right|\] is equal to:
14.
The number of all possible matrices of order $$3 \times 3$$ with each entry 0 or 1 is
A
18
B
512
C
81
D
None of these
Answer :
512
There are in total 9 entries and each entry can be selected in exactly 2 ways. Hence, the total number of all possible matrices of the given type is $$2^9 .$$
16.
If \[A = \left[ {\begin{array}{*{20}{c}}
1&2\\
0&3
\end{array}} \right]\] is a $$2 \times 2$$ matrix and $$f\left( x \right) = {x^2} - x + 2$$ is a polynomial, then what is $$f\left( A \right)\,?$$
A
\[\left[ {\begin{array}{*{20}{c}}
1&7\\
1&7
\end{array}} \right]\]
B
\[\left[ {\begin{array}{*{20}{c}}
2&6\\
0&8
\end{array}} \right]\]
C
\[\left[ {\begin{array}{*{20}{c}}
2&6\\
0&6
\end{array}} \right]\]
D
\[\left[ {\begin{array}{*{20}{c}}
2&6\\
0&7
\end{array}} \right]\]
17.
Number of square sub-matrices of order 2 (submatrix is obtained by deleting appropriate number of rows and columns in a given matrix) that can be formed from the matrix \[\left[ {\begin{array}{*{20}{c}}
1&2&{ - 1}&4\\
2&4&3&5\\
{ - 1}&{ - 2}&6&{ - 7}
\end{array}} \right]\] is
A
$$12$$
B
$$15$$
C
$$18$$
D
$$2^{12}$$
Answer :
$$18$$
The desired number of sub-matrices
$$ = {\,^4}{C_2} \times {\,^3}{C_2} = 18$$
18.
If $$a > 0$$ and discriminant of $$a{x^2} + 2bx + c$$ is $$- ve,$$ then \[\left| \begin{array}{l}
\,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,ax + b\\
\,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c\,\,\,\,\,\,\,\,\,\,\,\,bx + c\,\,\\
ax + b\,\,\,\,\,\,bx + c\,\,\,\,\,\,\,\,\,\,\,0
\end{array} \right|\] is equal to