Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

11. If \[f\left( x \right) = \left| \begin{array}{l} \,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x + 1\\ \,\,\,\,\,2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\left( {x - 1} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x + 1} \right)x\\ 3x\left( {x - 1} \right)\,\,\,\,\,\,\,\,\,\,\,x\left( {x - 1} \right)\left( {x - 2} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x + 1} \right)x\left( {x - 1} \right) \end{array} \, \right|\]             then $$f\left( {100} \right)$$  is equal to

A 0
B 1
C 100
D $$- 100$$
Answer :   0

12. Given $$a = \frac{x}{{\left( {y - z} \right)}},b = \frac{y}{{\left( {z - x} \right)}}$$     and $$c = \frac{z}{{\left( {x - y} \right)}},$$   where $$x, y$$  and $$z$$ are not all zero, Then the value of $$ab + bc + ca$$

A $$0$$
B $$1$$
C $$ - 1$$
D None of these
Answer :   $$ - 1$$

13. Let $$\alpha \,{\text{and }}\beta $$   be the roots of the equation $${x^2} + x + 1 = 0.$$   Then for $$y \ne 0\,\,{\text{in }}R,$$   \[\left| {\begin{array}{*{20}{c}} {y + 1}&\alpha &\beta \\ \alpha &{y + \beta }&1\\ \beta &1&{y + \alpha } \end{array}} \right|\]     is equal to:

A $$y\left( {{y^2} - 1} \right)$$
B $$y\left( {{y^2} - 3} \right)$$
C $${{y^3}}$$
D $${{y^3} - 1}$$
Answer :   $${{y^3}}$$

14. The number of all possible matrices of order $$3 \times 3$$  with each entry 0 or 1 is

A 18
B 512
C 81
D None of these
Answer :   512

15. Let \[\Delta = \left| {\begin{array}{*{20}{c}} {\sin x}&{\sin \left( {x + h} \right)}&{\sin \left( {x + 2h} \right)}\\ {\sin \left( {x + 2h} \right)}&{\sin x}&{\sin \left( {x + h} \right)}\\ {\sin \left( {x + h} \right)}&{\sin \left( {x + 2h} \right)}&{\sin x} \end{array}} \right|\]         Then, $$\mathop {\lim }\limits_{h \to 0} \left( {\frac{\Delta }{{{h^2}}}} \right)$$   is

A $$9{\sin ^2}x\cos x$$
B $$3{\cos ^2} x$$
C $$\sin x {\cos ^2} x$$
D None of these
Answer :   $$3{\cos ^2} x$$

16. If \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 0&3 \end{array}} \right]\]   is a $$2 \times 2$$  matrix and $$f\left( x \right) = {x^2} - x + 2$$     is a polynomial, then what is $$f\left( A \right)\,?$$

A \[\left[ {\begin{array}{*{20}{c}} 1&7\\ 1&7 \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} 2&6\\ 0&8 \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} 2&6\\ 0&6 \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} 2&6\\ 0&7 \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} 2&6\\ 0&8 \end{array}} \right]\]

17. Number of square sub-matrices of order 2 (submatrix is obtained by deleting appropriate number of rows and columns in a given matrix) that can be formed from the matrix \[\left[ {\begin{array}{*{20}{c}} 1&2&{ - 1}&4\\ 2&4&3&5\\ { - 1}&{ - 2}&6&{ - 7} \end{array}} \right]\]    is

A $$12$$
B $$15$$
C $$18$$
D $$2^{12}$$
Answer :   $$18$$

18. If $$a > 0$$  and discriminant of $$a{x^2} + 2bx + c$$    is $$- ve,$$  then \[\left| \begin{array}{l} \,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,ax + b\\ \,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c\,\,\,\,\,\,\,\,\,\,\,\,bx + c\,\,\\ ax + b\,\,\,\,\,\,bx + c\,\,\,\,\,\,\,\,\,\,\,0 \end{array} \right|\]     is equal to

A $$+ ve$$
B $$\left( {ac - {b^2}} \right)\left( {a{x^2} + 2bx + c} \right)$$
C $$- ve$$
D 0
Answer :   $$\left( {ac - {b^2}} \right)\left( {a{x^2} + 2bx + c} \right)$$

19. \[\left| {\begin{array}{*{20}{c}} 0&{p - q}&{p - r}\\ {q - p}&0&{q - r}\\ {r - p}&{r - q}&0 \end{array}} \right|\]     is equal to

A $$p + q + r$$
B $$0$$
C $$p - q - r$$
D $$ - p + q + r$$
Answer :   $$0$$

20. If $${a_1},{a_2},{a_3},.....,{a_n},.....$$      are G.P., then the determinant \[\Delta = \left| \begin{array}{l} \,\,\log {a_n}\,\,\,\,\,\,\,\,\,\,\log {a_{n + 1}}\,\,\,\,\,\,\,\,\,\log {a_{n + 2}}\\ \log {a_{n + 3}}\,\,\,\,\,\,\,\,\,\log {a_{n + 4}}\,\,\,\,\,\,\,\,\log {a_{n + 5}}\\ \log {a_{n + 6}}\,\,\,\,\,\,\,\,\,\log {a_{n + 7}}\,\,\,\,\,\,\,\,\log {a_{n + 8}} \end{array} \right|\]        is equal to

A 1
B 0
C 4
D 2
Answer :   0