Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

191. If $$A^k = 0$$  ($$A$$ is nilpotent with index $$k$$ ), $${\left( {I - A} \right)^p} = I + A + {A^2} + ..... + {A^{k - 1}},$$       thus $$p$$ is,

A $$- 1$$
B $$ - 2$$
C $$\frac{1}{2}$$
D None of these
Answer :   $$- 1$$

192. If \[P = \left[ \begin{array}{l} \frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\frac{1}{2}\\ - \frac{1}{2}\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]{\rm{and}}\]     \[A = \left[ \begin{array}{l} 1\,\,\,\,\,\,\,1\\ 0\,\,\,\,\,\,1 \end{array} \right]{\rm{ and}}\]    $$Q = PA{P^T}{\text{ and }}x = {P^T}{Q^{2005}}P$$       then $$x$$ is equal to

A \[\left[ \begin{array}{l} 1\,\,\,\,\,\,\,\,\,2005\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,1 \end{array} \right]\]
B \[\left[ \begin{array}{l} 4 + 2005\sqrt 3 \,\,\,\,\,\,\,\,\,\,\,\,\,6015\\ \,\,\,\,\,2005\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4 - 2005\sqrt 3 \end{array} \right]\]
C \[\frac{1}{4}\left[ \begin{array}{l} 2 + \sqrt 3 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ \,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 - \sqrt 3 \end{array} \right]\]
D \[\frac{1}{4}\left[ \begin{array}{l} 2005\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 - \sqrt 3 \\ 2 + \sqrt 3 \,\,\,\,\,\,\,\,\,2005 \end{array} \right]\]
Answer :   \[\left[ \begin{array}{l} 1\,\,\,\,\,\,\,\,\,2005\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,1 \end{array} \right]\]

193. If \[P = \left[ {\begin{array}{*{20}{c}} {\cos \left( {\frac{\pi }{6}} \right)}&{\sin \left( {\frac{\pi }{6}} \right)}\\ { - \sin \left( {\frac{\pi }{6}} \right)}&{\cos \left( {\frac{\pi }{6}} \right)} \end{array}} \right],A = \left[ {\begin{array}{*{20}{c}} 0&1\\ 0&0 \end{array}} \right]\]        and $$Q = PAP'$$   then $$P'Q^{2007}P$$   is equal to

A \[\left[ {\begin{array}{*{20}{c}} 1&{2007}\\ 0&1 \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} 1&{\frac{{\sqrt 3 }}{2}}\\ 0&{2007} \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}}&{2007}\\ 0&1 \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}\\ 1&{2007} \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} 1&{2007}\\ 0&1 \end{array}} \right]\]

194. If $$x > 0$$  and $$ \ne 1,y > 0$$   and $$ \ne 1,z > 0$$   and $$ \ne 1$$  then the value of \[\left| {\begin{array}{*{20}{c}} 1&{{{\log }_x}y}&{{{\log }_x}z} \\ {{{\log }_y}x}&1&{{{\log }_y}z} \\ {{{\log }_z}x}&{{{\log }_z}y}&1 \end{array}} \right|\]     is

A $$0$$
B $$1$$
C $$ - 1$$
D None of these
Answer :   $$0$$

195. If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A $$A + B = B + A$$
B $$A + B = A - B$$
C $$A - B = B - A$$
D $$AB=BA$$
Answer :   $$A + B = B + A$$

196. If \[{\Delta _r} = \left| {\begin{array}{*{20}{c}} {r - 1}&n&6\\ {{{\left( {r - 1} \right)}^2}}&{2{n^2}}&{4n - 2}\\ {{{\left( {r - 1} \right)}^2}}&{3{n^3}}&{3{n^2} - 3n} \end{array}} \right|,\]       then $$\sum\limits_{r = 1}^n {{\Delta _r}} $$  is

A $$0$$
B $$1$$
C $$3$$
D $$ - 1$$
Answer :   $$0$$

197. If $$A$$ is an orthogonal matrix of order 3 and \[B = \left[ {\begin{array}{*{20}{c}} 1&2&3\\ { - 3}&0&2\\ 2&5&0 \end{array}} \right],\]    then which of the following is/are correct ?
$$\eqalign{ & 1.\left| {AB} \right| = \pm 47 \cr & 2.AB = BA \cr} $$
Select the correct answer using the code given below :

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   Both 1 and 2

198. The matrix \[A = \left[ {\begin{array}{*{20}{c}} 1&3&2\\ 1&{x - 1}&1\\ 2&7&{x - 3} \end{array}} \right]\]     will have inverse for every real number $$x$$ except for

A $$x = \frac{{11 \pm \sqrt 5 }}{2}$$
B $$x = \frac{{9 \pm \sqrt 5 }}{2}$$
C $$x = \frac{{11 \pm \sqrt 3 }}{2}$$
D $$x = \frac{{9 \pm \sqrt 3 }}{2}$$
Answer :   $$x = \frac{{11 \pm \sqrt 5 }}{2}$$

199. If matrix \[A = \left[ {\begin{array}{*{20}{c}} { - 5}&{ - 8}&0\\ 3&5&0\\ 1&2&{ - 1} \end{array}} \right]\]    then find $$tr\left( A \right) + tr\left( {{A^2}} \right) + tr\left( {{A^3}} \right) + ..... + tr\left( {{A^{100}}} \right)$$

A 100
B 50
C 200
D None of these
Answer :   200

200. Let \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right]\]   and \[B = \left[ {\begin{array}{*{20}{c}} a&0\\ 0&b \end{array}} \right]\]   where $$a, b$$  are natural numbers, then which one of the following is correct ?

A There exist more than one but finite number of $$B’s$$  such that $$AB = BA$$
B There exists exactly one $$B$$ such that $$AB = BA$$
C There exist infinitely many $$B’s$$  such that $$AB = BA$$
D There cannot exist any $$B$$ such that $$AB = BA$$
Answer :   There exist infinitely many $$B’s$$  such that $$AB = BA$$