194.
If $$x > 0$$ and $$ \ne 1,y > 0$$ and $$ \ne 1,z > 0$$ and $$ \ne 1$$ then the value of \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\] is
195.
If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?
A
$$A + B = B + A$$
B
$$A + B = A - B$$
C
$$A - B = B - A$$
D
$$AB=BA$$
Answer :
$$A + B = B + A$$
If $$A$$ and $$B$$ are square matrices of same degree then matrices $$A$$ and $$B$$ can be added or subtracted or multiplied. By algebra of matrices the only correct option is $$A + B = B + A$$
197.
If $$A$$ is an orthogonal matrix of order 3 and \[B = \left[ {\begin{array}{*{20}{c}}
1&2&3\\
{ - 3}&0&2\\
2&5&0
\end{array}} \right],\] then which of the following is/are correct ?
$$\eqalign{
& 1.\left| {AB} \right| = \pm 47 \cr
& 2.AB = BA \cr} $$
Select the correct answer using the code given below :
A
1 only
B
2 only
C
Both 1 and 2
D
Neither 1 nor 2
Answer :
Both 1 and 2
The determinent of a orthogonal matrix is always $$ \pm 1$$
$$\left| A \right| = \pm 1$$
\[B = \left[ {\begin{array}{*{20}{c}}
1&2&3\\
{ - 3}&0&2\\
2&5&0
\end{array}} \right]\]
$$\eqalign{
& \left| B \right| = - 10 - 2\left( { - 4} \right) + 3\left( { - 15} \right) \cr
& = - 47 \cr
& \left| {AB} \right| = \left| A \right|\left| B \right| \cr
& = \left( { \pm 1} \right)\left( { - 47} \right) \cr
& = \pm 47 \cr} $$
Taking $$A$$ as identity matrix we can prove $$AB = BA$$
198.
The matrix \[A = \left[ {\begin{array}{*{20}{c}}
1&3&2\\
1&{x - 1}&1\\
2&7&{x - 3}
\end{array}} \right]\] will have inverse for every real number $$x$$ except for
200.
Let \[A = \left[ {\begin{array}{*{20}{c}}
1&2\\
3&4
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
a&0\\
0&b
\end{array}} \right]\] where $$a, b$$ are natural numbers, then which one of the following is correct ?
A
There exist more than one but finite number of $$B’s$$ such that $$AB = BA$$
B
There exists exactly one $$B$$ such that $$AB = BA$$
C
There exist infinitely many $$B’s$$ such that $$AB = BA$$
D
There cannot exist any $$B$$ such that $$AB = BA$$
Answer :
There exist infinitely many $$B’s$$ such that $$AB = BA$$
\[\begin{array}{l}
AB = \left[ {\begin{array}{*{20}{c}}
1&2\\
3&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
a&0\\
0&b
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
a&{2b}\\
{3a}&{4b}
\end{array}} \right]\\
{\rm{and, }}\,\,BA = \left[ {\begin{array}{*{20}{c}}
a&0\\
0&b
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2\\
3&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
a&{2a}\\
{3b}&{4b}
\end{array}} \right]\\
{\rm{If, }}\,\,AB = BA\\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
a&{2b}\\
{3a}&{4b}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
a&{2a}\\
{3b}&{4b}
\end{array}} \right]\\
\Rightarrow a = b
\end{array}\]
From the above it is clear that there exist infinitely many $$B's$$ such that $$AB = BA.$$