Matrices and Determinants MCQ Questions & Answers in Algebra | Maths
Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
211.
The number of values of $$k$$ for which the system of equations $$(k + 1) x + 8y = 4k, kx + (k + 3) y = 3k - 1$$ has infinitely many solutions is
A
0
B
1
C
2
D
infinite
Answer :
1
For infinitely many solutions the two equations become identical
$$\eqalign{
& \Rightarrow \,\,\frac{{k + 1}}{k} = \frac{8}{{k + 3}} = \frac{{4k}}{{3k - 1}} \cr
& \Rightarrow \,\,k = 1 \cr} $$
212.
If in a triangle $$ABC,$$ \[\left| {\begin{array}{*{20}{c}}
1&{\sin A}&{{{\sin }^2}A}\\
1&{\sin B}&{{{\sin }^2}B}\\
1&{\sin C}&{{{\sin }^2}C}
\end{array}} \right| = 0\] then the triangle is
A
equilateral or isosceles
B
equilateral or right-angled
C
right angled or isosceles
D
None of these
Answer :
equilateral or isosceles
\[\left| {\begin{array}{*{20}{c}}
1&{\sin A}&{{{\sin }^2}A}\\
1&{\sin B}&{{{\sin }^2}B}\\
1&{\sin C}&{{{\sin }^2}C}
\end{array}} \right| = 0\]
$$\eqalign{
& \Rightarrow \left( {\sin A - \sin B} \right)\left( {\sin B - \sin C} \right)\left( {\sin C - \sin A} \right) = 0 \cr
& \Rightarrow \sin A = \sin B{\text{ or }}\sin B = \sin C{\text{ or }}\sin C = \sin A \cr} $$
∴ atleast two of $$A, B, C$$ are equal.
Hence the triangle is isosceles or equilateral.
213.
If $$a, b, c$$ are in G.P., then what is the value of \[\left| {\begin{array}{*{20}{c}}
a&b&{a + b}\\
b&c&{b + c}\\
{a + b}&{b + c}&0
\end{array}} \right|\,?\]
214.
Let \[A + 2B = \left[ {\begin{array}{*{20}{c}}
1&2&0\\
6&{ - 3}&3\\
{ - 5}&3&1
\end{array}} \right]\] and \[2A - B = \left[ {\begin{array}{*{20}{c}}
2&{ - 1}&5\\
2&{ - 1}&6\\
0&1&2
\end{array}} \right],\] then $$tr\left( A \right) - tr\left( B \right)$$ is
A
1
B
3
C
2
D
0
Answer :
2
Here to find the value of $$tr\left( A \right) - tr\left( B \right),$$ we need not to find the matrices $$A$$ and $$B.$$
We can find $$tr\left( A \right) - tr\left( B \right)$$ using the properties of trace of matrix, i.e.,
\[A + 2B = \left[ {\begin{array}{*{20}{c}}
1&2&0\\
6&{ - 3}&3\\
{ - 5}&3&1
\end{array}} \right]\]
$$\eqalign{
& \Rightarrow tr\left( {A + 2B} \right) = - 1\left( 1 \right) \cr
& {\text{or, }}tr\left( A \right) + 2tr\left( B \right) = - 1 \cr} $$
\[ \Rightarrow 2A - B = \left[ {\begin{array}{*{20}{c}}
2&{ - 1}&5\\
2&{ - 1}&6\\
0&1&2
\end{array}} \right]\]
$$ \Rightarrow tr\left( {2A - B} \right) = 3\,\,\,\,{\text{or, }}2tr\left( A \right) - tr\left( B \right) = 3\left( 2 \right)$$
Solving (1) and (2), we get $$tr\left( A \right) = 1{\text{ and }}tr\left( B \right) = - 1$$
$$ \Rightarrow tr\left( A \right) - tr\left( B \right) = 2$$
215.
If the system of linear equations $$x + 2ay + az = 0 ; x + 3by + bz = 0 ; x + 4cy + cz = 0 ;$$ has a non - zero solution, then $$a, b, c.$$