Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

221. If $$\left| A \right| = 8,$$  where $$A$$ is square matrix of order 3, then what is $$\left| {adj\,A} \right|$$  equal to ?

A 16
B 24
C 64
D 512
Answer :   64

222. The rank of the matrix \[\left[ {\begin{array}{*{20}{c}} 1&2&3 \\ \lambda &2&4 \\ 2&{ - 3}&1 \end{array}} \right]\]    is $$3$$ if

A \[\lambda \ne \frac{{18}}{{11}}\]
B \[\lambda = \frac{{18}}{{11}}\]
C \[\lambda = - \frac{{18}}{{11}}\]
D None of these
Answer :   \[\lambda \ne \frac{{18}}{{11}}\]

223. The rank of the matrix \[\left[ {\begin{array}{*{20}{c}} { - 1}&2&5\\ 2&{ - 4}&{a - 4}\\ 1&{ - 2}&{a + 1} \end{array}} \right]\]    is

A $$1$$ if $$a = 6$$
B $$2$$ if $$a = 1$$
C $$3$$ if $$a = 2$$
D $$1$$ if $$a = 4$$
Answer :   $$2$$ if $$a = 1$$

224. If the matrix $$B$$ is the adjoint of the square matrix $$A$$ and $$\alpha $$ is the value of the determinant of $$A,$$ then what is $$AB$$  equal to ?

A $$\alpha $$
B $$\left( {\frac{1}{\alpha }} \right)I$$
C $$I$$
D $$\alpha I$$
Answer :   $$\alpha I$$

225. If \[A = \left[ {\begin{array}{*{20}{c}} \alpha &\beta \\ \gamma &\delta \end{array}} \right]\]   such that $$A^2$$ is a two–rowed unit matrix, then $$\delta $$ is equal to

A $$\alpha $$
B $$\beta $$
C $$\gamma $$
D None of these
Answer :   $$\alpha $$

226. What is the value of the determinant \[\left| {\begin{array}{*{20}{c}} 1&{bc}&{a\left( {b + c} \right)}\\ 1&{ca}&{b\left( {c + a} \right)}\\ 1&{ab}&{c\left( {a + b} \right)} \end{array}} \right|\,?\]

A $$0$$
B $$abc$$
C $$ab + bc + ca$$
D $$abc\left( {a + b + c} \right)$$
Answer :   $$0$$

227. \[\left| {\begin{array}{*{20}{c}} {1 + x}&1&1 \\ 1&{1 + x}&1 \\ 1&1&{1 + x} \end{array}} \right|\]     is equal to

A $${x^2}\left( {x + 3} \right)$$
B $$3{x^3}$$
C $$0$$
D $${x^3}$$
Answer :   $${x^2}\left( {x + 3} \right)$$

228. If \[A = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ a&b&{ - 1} \end{array}} \right]\]   and $$I$$ is the unit matrix of order 3, then $${A^2} + 2{A^4} + 4{A^6}$$    is equal to

A $$7A^8$$
B $$7A^7$$
C $$8I$$
D $$6I$$
Answer :   $$7A^8$$

229. The value of \[\left| {\begin{array}{*{20}{c}} 1&1&1 \\ {{{\left( {{2^x} + {2^{ - x}}} \right)}^2}}&{{{\left( {{3^x} + {3^{ - x}}} \right)}^2}}&{{{\left( {{5^x} + {5^{ - x}}} \right)}^2}} \\ {{{\left( {{2^x} - {2^{ - x}}} \right)}^2}}&{{{\left( {{3^x} - {3^{ - x}}} \right)}^2}}&{{{\left( {{5^x} - {5^{ - x}}} \right)}^2}} \end{array}} \right|\]        is

A $$0$$
B $${30^x}$$
C $${30^{- x}}$$
D None of these
Answer :   $$0$$

230. If \[A = \left[ \begin{array}{l} a\,\,\,\,\,\,\,\,b\\ b\,\,\,\,\,\,\,\,a \end{array} \right]{\rm{and }}\,\,{A^2} = \left[ \begin{array}{l} \alpha \,\,\,\,\,\,\beta \\ \beta \,\,\,\,\,\,\alpha \end{array} \right],\]       then

A $$\alpha = 2ab,\beta = {a^2} + {b^2}$$
B $$\alpha = {a^2} + {b^2},\beta = ab$$
C $$\alpha = {a^2} + {b^2},\beta = 2ab$$
D $$\alpha = {a^2} + {b^2},\beta = {a^2} - {b^2}$$
Answer :   $$\alpha = {a^2} + {b^2},\beta = 2ab$$