Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

231. If $$A$$ is any $$2 \times 2$$  matrix such that \[\left[ {\begin{array}{*{20}{c}} 1&2\\ 0&3 \end{array}} \right]A = \left[ {\begin{array}{*{20}{c}} { - 1}&0\\ 6&3 \end{array}} \right],\]     then what is $$A$$ equal to ?

A \[\left[ {\begin{array}{*{20}{c}} { - 5}&1\\ { - 2}&2 \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} { - 5}&{ - 2}\\ { 1}&2 \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} { - 5}&{ - 2}\\ { 2}&1 \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} {5}&2\\ { - 2}&{ - 1} \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} { - 5}&{ - 2}\\ { 2}&1 \end{array}} \right]\]

232. If \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&5 \end{array}} \right],\]   then the value of the determinant $$\left| {{A^{2009}} - 5{A^{2008}}} \right|$$    is

A $$ - 6$$
B $$ - 5$$
C $$ - 4$$
D $$4$$
Answer :   $$ - 6$$

233. If \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} {1 + {{\sin }^2}x}&{{{\cos }^2}x}&{4\sin 2x}\\ {{{\sin }^2}x}&{1 + {{\cos }^2}x}&{4\sin 2x}\\ {{{\sin }^2}x}&{{{\cos }^2}x}&{1 + 4\sin 2x} \end{array}} \right|\]         What is the maximum value of $$f\left( x \right)\,?$$

A 2
B 4
C 6
D 8
Answer :   6

234. If $${a^2} + {b^2} + {c^2} \ne - 2$$    and \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} {\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x}\\ {\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x}\\ {\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \end{array}} \right|,\]         then $$f\left( x \right)$$  is a polynomial of degree

A 1
B 0
C 3
D 2
Answer :   2

235. If \[A = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&1 \end{array}} \right]\]   then $$A^{100} :$$

A $${2^{100}}A$$
B $${2^{99}}A$$
C $${2^{101}}A$$
D None of the above
Answer :   $${2^{99}}A$$

236. The number of values of $$k$$ for which the linear equations $$4x + ky + 2z = 0, kx + 4y + z = 0$$       and $$2x + 2y + z = 0$$    possess a non-zero solution is

A 2
B 1
C zero
D 3
Answer :   2

237. The element $$a_{ij}$$ of square matrix is given by $$ a_{ij} = \left( {i + j} \right)\left( {i - j} \right),$$     then matrix $$A$$ must be

A Skew-symmetric matrix
B Triangular matrix
C Symmetric matrix
D Null matrix
Answer :   Skew-symmetric matrix

238. If $$\alpha ,\beta \ne 0,\,{\text{and }}\,f\left( n \right) = {\alpha ^n} + {\beta ^n}$$      and \[\left| \begin{array}{l} \,\,\,\,\,\,3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 + f\left( 1 \right)\,\,\,\,\,\,\,\,\,1 + f\left( 2 \right)\\ 1 + f\left( 1 \right)\,\,\,\,\,\,\,\,\,1 + f\left( 2 \right)\,\,\,\,\,\,\,\,\,\,1 + f\left( 3 \right)\\ 1 + f\left( 2 \right)\,\,\,\,\,\,\,\,1 + f\left( 3 \right)\,\,\,\,\,\,\,\,\,\,1 + f\left( 4 \right) \end{array} \right| = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2},\]         then $$K$$ is equal to:

A 1
B $$- 1$$
C $$\alpha \beta $$
D $$\frac{1}{{\alpha \beta }}$$
Answer :   1

239. If $$\omega $$ is the cube root of unity, then what is one root of the equation \[\left| {\begin{array}{*{20}{c}} {{x^2}}&{ - 2x}&{ - 2{\omega ^2}}\\ 2&\omega &{ - \omega }\\ 0&\omega &1 \end{array}} \right| = 0\,?\]

A $$1$$
B $$ - 2$$
C $$2$$
D $$\omega $$
Answer :   $$ - 2$$

240. If $$a,b,c,d > 0,x \in R$$     and $$\left( {{a^2} + {b^2} + {c^2}} \right){x^2} - 2\left( {ab + bc + cd} \right)x + {b^2} + {c^2} + {d^2} \leqslant 0.$$           Then, \[\left| {\begin{array}{*{20}{c}} {33}&{14}&{\log a}\\ {65}&{27}&{\log b}\\ {97}&{40}&{\log c} \end{array}} \right|\]    is equal to

A $$1$$
B $$ - 1$$
C $$2$$
D $$0$$
Answer :   $$0$$