Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

241. If $$A$$ is a square matrix of order $$n,$$ then $$adj\left( {adj\,A} \right)$$   is equal to

A $${\left| A \right|^{n - 1}}A$$
B $${\left| A \right|^{n}}A$$
C $${\left| A \right|^{n - 2}}A$$
D None of these
Answer :   $${\left| A \right|^{n - 2}}A$$

242. Let $$P = \left[ {{a_{ij}}} \right]{\text{be a 3}} \times {\text{3}}$$    matrix and let $$Q = \left[ {{b_{ij}}} \right],{\text{where }}{b_{ij}} = {2^{i + j}}{a_{ij}}\,{\text{for 1}} \leqslant i,j \leqslant 3.$$         If the determinant of $$P$$ is 2, then the determinant of the matrix $$Q$$ is

A $${2^{10}}$$
B $${2^{11}}$$
C $${2^{12}}$$
D $${2^{13}}$$
Answer :   $${2^{13}}$$

243. If \[B = \left[ {\begin{array}{*{20}{c}} 3&4\\ 2&3 \end{array}} \right]\]   and \[C = \left[ {\begin{array}{*{20}{c}} 3&{ - 4}\\ { - 2}&3 \end{array}} \right]\]   and $$X = BC,$$   find $$X^n$$

A $$0$$
B $$I$$
C $$2I$$
D None of these
Answer :   $$I$$

244. Let $$A$$ be a $$2 \times 2$$  matrix
Statement - 1 : adj (adj $$A$$) = $$A$$
Statement - 2 : $$\left| {{\text{adj}}\,A} \right| = \left| A \right|$$

A Statement - 1 is true, Statement - 2 is true. Statement - 2 is not a correct explanation for Statement - 1.
B Statement - 1 is true, Statement - 2 is false.
C Statement - 1 is false, Statement - 2 is true.
D Statement - 1 is true, Statement - 2 is true. Statement - 2 is a correct explanation for Statement - 1.
Answer :   Statement - 1 is true, Statement - 2 is true. Statement - 2 is a correct explanation for Statement - 1.

245. If \[\left| {\begin{array}{*{20}{c}} {{x^2} + x}&{3x - 1}&{ - x + 3}\\ {2x + 1}&{2 + {x^2}}&{{x^3} - 3}\\ {x - 3}&{{x^2} + 4}&{3x} \end{array}} \right| = {a_0} + {a_1}x + {a_2}{x^2} + ..... + {a_7}{x^7},\]            then the value of $$a_0$$ is

A 25
B 24
C 23
D 21
Answer :   21

246. Let $$A = {\left[ {{a_{ij}}} \right]_{m\, \times m}}$$   be a matrix and $$C = {\left[ {{c_{ij}}} \right]_{m\, \times m}}$$   be another matrix where $${c_{ij}}.$$  is the cofactor of $${a_{ij}}.$$  Then, what is the value of $$\left| {AC} \right|\,?$$

A $${\left| A \right|^{m - 1}}$$
B $${\left| A \right|^{m}}$$
C $${\left| A \right|^{m + 1}}$$
D Zero
Answer :   $${\left| A \right|^{m + 1}}$$

247. If \[\left[ {\begin{array}{*{20}{c}} {x + y}&y \\ {2x}&{x - y} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2 \\ { - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3 \\ 2 \end{array}} \right]\]      then $$x \cdot y$$  is equal to

A $$ - 5$$
B $$5$$
C $$4$$
D $$6$$
Answer :   $$ - 5$$

248. If $$A$$ is a square matrix, then $$AA^T$$  is a

A skew-symmetric matrix
B symmetric matrix
C diagonal matrix
D None of these
Answer :   symmetric matrix

249. If \[A = \left[ {\begin{array}{*{20}{c}} 0&c&{ - b} \\ { - c}&0&a \\ b&{ - a}&0 \end{array}} \right]\]    and \[B = \left[ {\begin{array}{*{20}{c}} {{a^2}}&{ab}&{ac} \\ {ab}&{{b^2}}&{bc} \\ {ac}&{bc}&{{c^2}} \end{array}} \right]\]    then $$AB$$  is equal to

A $$0$$
B $$I$$
C $$2I$$
D None of these
Answer :   $$0$$

250. The value of the determinant \[\left| {\begin{array}{*{20}{c}} {^5{C_0}}&{^5{C_3}}&{14} \\ {^5{C_1}}&{^5{C_4}}&1 \\ {^5{C_2}}&{^5{C_5}}&1 \end{array}} \right|\]    is

A $$0$$
B $$ - \left( {6!} \right)$$
C $$80$$
D None of these
Answer :   $$ - \left( {6!} \right)$$