262.
Let $$a, b, c$$ be any real numbers. Suppose that there are real numbers $$x, y, z$$ not all zero such that $$x = cy + bz, y = az + cx,$$ and $$z = bx + ay.$$ Then $${a^2} + {b^2} + {c^2} + 2abc$$ is equal to
A
2
B
$$- 1$$
C
0
D
1
Answer :
1
The given equations are
$$\eqalign{
& - x + cy + bz = 0 \cr
& cx - y + az = 0 \cr
& bx + ay - z = 0 \cr} $$
$$\because \,\,x,y,z$$ are not all zero
∴ The above system should not have unique (zero) solution
$$ \Rightarrow \,\,\Delta = 0$$
\[ \Rightarrow \,\left| \begin{array}{l}
- 1\,\,\,\,\,\,\,\,c\,\,\,\,\,\,\,\,\,b\\
\,\,c\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,a\\
\,\,b\,\,\,\,\,\,\,\,\,a\,\,\,\,\,\, - 1
\end{array} \right| = 0\]
$$\eqalign{
& \Rightarrow \,\, - 1\left( {1 - {a^2}} \right) - c\left( { - c - ab} \right) + b\left( {ac + b} \right) = 0 \cr
& \Rightarrow \,\, - 1 + {a^2} + {b^2} + {c^2} + 2abc = 0 \cr
& \Rightarrow \,\,{a^2} + {b^2} + {c^2} + 2abc = 1 \cr} $$