Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

21. Let \[A = \left[ {\begin{array}{*{20}{c}} 5&6&1\\ 2&{ - 1}&5 \end{array}} \right].\]    Let there exist a matrix $$B$$ such that \[AB = \,\left[ {\begin{array}{*{20}{c}} {35}&{49}\\ {29}&{13} \end{array}} \right].\]    What is $$B$$ equal to ?

A \[\left[ {\begin{array}{*{20}{c}} 5&1&4\\ 2&{ 6}&3 \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} 2&6&3\\ 5&{1}&4 \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} 5\\ 1\\ 4 \end{array}\,\,\,\,\,\begin{array}{*{20}{c}} 2\\ 6\\ 3 \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} 2\\ 6\\ 3 \end{array}\,\,\,\,\,\begin{array}{*{20}{c}} 5\\ 1\\ 4 \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} 5\\ 1\\ 4 \end{array}\,\,\,\,\,\begin{array}{*{20}{c}} 2\\ 6\\ 3 \end{array}} \right]\]

22. Using the factor theorem it is found that $$b + c, c + a$$   and $$a + b$$  are three factors of the determinant \[\left| {\begin{array}{*{20}{c}} { - 2a}&{a + b}&{a + c} \\ {b + a}&{ - 2b}&{b + c} \\ {c + a}&{c + b}&{ - 2c} \end{array}} \right|.\]     The other factor in the value of the determinant is

A $$4$$
B $$2$$
C $$a + b + c$$
D None of these
Answer :   $$4$$

23. The determinant \[\left| {\begin{array}{*{20}{c}} a&{a + d}&{a + 2d} \\ {{a^2}}&{{{\left( {a + d} \right)}^2}}&{{{\left( {a + 2d} \right)}^2}} \\ {2a + 3d}&{2\left( {a + d} \right)}&{2a + d} \end{array}} \right| = 0.\]       Then

A $$d = 0$$
B $$a + d = 0$$
C $$d = 0$$  or $$a + d = 0$$
D None of these
Answer :   $$d = 0$$  or $$a + d = 0$$

24. If $$x, y, z$$  are integers in A.P., lying between 1 and 9, and $$x51, y41$$  and $$z31$$ are three-digit numbers then the value of \[\left| {\begin{array}{*{20}{c}} 5&4&3 \\ {x51}&{y41}&{z31} \\ x&y&z \end{array}} \right|\]    is

A $$x + y + z$$
B $$x - y + z$$
C $$0$$
D None of these
Answer :   $$0$$

25. If \[\left| {\begin{array}{*{20}{c}} {a + x}&a&x\\ {a - x}&a&x\\ {a - x}&a&{ - x} \end{array}} \right| = 0,\]     then $$x$$ is

A $$0$$
B $$a$$
C $$3$$
D $$2a$$
Answer :   $$0$$

26. If \[{\vartriangle _1} = \left| {\begin{array}{*{20}{c}} 1&1&1 \\ a&b&c \\ {{a^2}}&{{b^2}}&{{c^2}} \end{array}} \right|,{\vartriangle _2} = \left| {\begin{array}{*{20}{c}} 1&{bc}&a \\ 1&{ca}&b \\ 1&{ab}&c \end{array}} \right|\]        then

A $${\vartriangle _1} + {\vartriangle _2} = 0$$
B $${\vartriangle _1} + {2\vartriangle _2} = 0$$
C $${\vartriangle _1} = {\vartriangle _2}$$
D None of these
Answer :   $${\vartriangle _1} + {\vartriangle _2} = 0$$

27. Let \[A = \left( \begin{array}{l} \,\,0\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\, - 1\\ \,\,0\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,0\\ - 1\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,0 \end{array} \right).\]     The only correct statement about the matrix $$A$$ is

A $${A^2} = I$$
B $$A = \left( { - 1} \right)I,$$   where $$I$$ is a unit matrix
C $${A^{ - 1}}$$  does not exist
D $$A$$ is a zero matrix
Answer :   $${A^2} = I$$

28. If $${B^n} - A = I$$   and \[A = \left[ {\begin{array}{*{20}{c}} {26}&{26}&{18}\\ {25}&{37}&{17}\\ {52}&{39}&{50} \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 1&4&2\\ 3&5&1\\ 7&1&6 \end{array}} \right],\]        then $$n =$$

A 2
B 3
C 4
D 5
Answer :   2

29. If $$P$$ is a $$3 \times 3$$  matrix such that $${P^T} = 2P + I,$$   where $${P^T}$$ is the transpose of $$P$$ and $$I$$ is the $$3 \times 3$$  identity matrix, then there exists column matrix \[X = \left[ \begin{array}{l} x\\ y\\ z \end{array} \right] \ne \left[ \begin{array}{l} 0\\ 0\\ 0 \end{array} \right]\]   such that

A \[PX = \left[ \begin{array}{l} 0\\ 0\\ 0 \end{array} \right]\]
B $$PX = X$$
C $$PX = 2X$$
D $$PX = - X$$
Answer :   $$PX = - X$$

30. The roots of \[\left| {\begin{array}{*{20}{c}} x&a&b&1 \\ \lambda &x&b&1 \\ \lambda &\mu &x&1 \\ \lambda &\mu & \nu &1 \end{array}} \right| = 0\]    are independent of

A $$\lambda ,\mu ,\nu$$
B $$a, b$$
C $$\lambda ,\mu ,\nu , a , b$$
D None of these
Answer :   $$a, b$$