32.
The determinant \[\left| {\begin{array}{*{20}{c}}
{xp + y}&x&y \\
{yp + z}&y&z \\
0&{xp + y}&{yp + z}
\end{array}} \right| = 0\] for all $$p \in R$$ if
A
$$x, y, z$$ are in A.P.
B
$$x, y, z$$ are in G.P.
C
$$x, y, z$$ are in H.P.
D
$$xy, yz, zx$$ are in A.P.
Answer :
$$x, y, z$$ are in G.P.
Using $${C_1} \to {C_1} - p \times {C_2} - {C_3},$$ we get $$\left( {x{p^2} - z} \right)\left( {xz - {y^2}} \right) = 0.$$
For all $$p,x{p^2} - z \ne 0.\,{\text{So, }}{y^2} = xz.$$
33.
The value of \[\left| {\begin{array}{*{20}{c}}
{^{10}{C_4}}&{^{10}{C_5}}&{^{11}{C_m}}\\
{^{11}{C_6}}&{^{11}{C_7}}&{^{12}{C_{m + 2}}}\\
{^{12}{C_8}}&{^{12}{C_9}}&{^{13}{C_{m + 4}}}
\end{array}} \right| = 0,\] when $$m$$ is equal to
35.
If $$D$$ is determinant of order 3 and $$D'$$ is the determinant obtained by replacing the elements of $$D$$ by their cofactors, then which one of the following is correct ?
36.
Given $$2x - y + 2z = 2,$$ $$x - 2y + z = - 4,$$ $$x + y + \lambda z = 4$$ then the value of $$\lambda $$ such that the given system of equation has NO solution, is
A
3
B
1
C
0
D
$$- 3$$
Answer :
1
Since the system has no solution, $$\Delta = 0$$ and any one amongst $${\Delta _x},{\Delta _y},{\Delta _z}$$ is non - zero.
\[\left| \begin{array}{l}
2\,\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,2\\
1\,\,\,\,\,\,\, - 2\,\,\,\,\,\,\,\,1\\
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\lambda
\end{array} \right| = 0\]
$$ \Rightarrow \,\,\lambda = 1$$
\[{\rm{Also, }}\,\,{\Delta _z} = \left| \begin{array}{l}
2\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\\
1\,\,\,\,\,\, - 2\,\,\,\,\, - 4\\
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,4
\end{array} \right| = 6 \ne 0\]
37.
If \[\left| {\begin{array}{*{20}{c}}
a&{\cot \frac{A}{2}}&\lambda \\
b&{\cot \frac{B}{2}}&\mu \\
c&{\cot \frac{C}{2}}&\gamma
\end{array}} \right| = 0,\] where $$a, b, c, A, B,$$ and $$C$$ are elements of a triangle $$ABC$$ with usual meaning. Then, the value of a $$\left( {\mu - \gamma } \right) + b\left( {\gamma - \lambda } \right) + c\left( {\lambda - \mu } \right) = 0$$ is
39.
If $${a_r} = {\left( {\cos 2r\pi + i\sin 2r\pi } \right)^{\frac{1}{9}}},$$ then the value of \[\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}}\\
{{a_4}}&{{a_5}}&{{a_6}}\\
{{a_7}}&{{a_8}}&{{a_9}}
\end{array}} \right|\] is
40.
If the determinant \[\left| {\begin{array}{*{20}{c}}
{\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\
{{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\
{\cos 4x}&{{{\cos }^2}x}&{\cos 2x}
\end{array}} \right|\] is expanded in powers of $$\sin x$$ then the constant term in the expansion is
A
$$1$$
B
$$2$$
C
$$- 1$$
D
None of these
Answer :
$$- 1$$
The constant term = value of the determinant when $$x = 0.$$