Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

31. Suppose \[\Delta = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|\]    and \[\Delta ' = \left| {\begin{array}{*{20}{c}} {{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\ {{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\ {{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}} \end{array}} \right|.\]       Then

A $$\Delta ' = \Delta $$
B $$\Delta ' = \Delta \left( {1 - pqr} \right)$$
C $$\Delta ' = \Delta \left( {1 + p + q + r} \right)$$
D $$\Delta ' = \Delta \left( {1 + pqr} \right)$$
Answer :   $$\Delta ' = \Delta \left( {1 + pqr} \right)$$

32. The determinant \[\left| {\begin{array}{*{20}{c}} {xp + y}&x&y \\ {yp + z}&y&z \\ 0&{xp + y}&{yp + z} \end{array}} \right| = 0\]      for all $$p \in R$$  if

A $$x, y, z$$  are in A.P.
B $$x, y, z$$  are in G.P.
C $$x, y, z$$  are in H.P.
D $$xy, yz, zx$$   are in A.P.
Answer :   $$x, y, z$$  are in G.P.

33. The value of \[\left| {\begin{array}{*{20}{c}} {^{10}{C_4}}&{^{10}{C_5}}&{^{11}{C_m}}\\ {^{11}{C_6}}&{^{11}{C_7}}&{^{12}{C_{m + 2}}}\\ {^{12}{C_8}}&{^{12}{C_9}}&{^{13}{C_{m + 4}}} \end{array}} \right| = 0,\]      when $$m$$ is equal to

A 6
B 5
C 4
D 1
Answer :   5

34. Matrix $$M_r$$ is defined as \[{M_r} = \left( {\begin{array}{*{20}{c}} r&{r - 1}\\ {r - 1}&r \end{array}} \right),r \in N.\]      The value of $$\det\left( {{M_1}} \right) + \det \left( {{M_2}} \right) + \det \left( {{M_3}} \right) + ..... + \det \left( {{M_{2014}}} \right)$$           is

A $$2013$$
B $$2014$$
C $${\left( {2013} \right)^2}$$
D $${\left( {2014} \right)^2}$$
Answer :   $${\left( {2014} \right)^2}$$

35. If $$D$$ is determinant of order 3 and $$D'$$ is the determinant obtained by replacing the elements of $$D$$ by their cofactors, then which one of the following is correct ?

A $$D' = {D^2}$$
B $$D' = {D^3}$$
C $$D' = 2{D^2}$$
D $$D' = 3{D^3}$$
Answer :   $$D' = {D^2}$$

36. Given $$2x - y + 2z = 2,$$    $$x - 2y + z = - 4,$$    $$x + y + \lambda z = 4$$    then the value of $$\lambda $$ such that the given system of equation has NO solution, is

A 3
B 1
C 0
D $$- 3$$
Answer :   1

37. If \[\left| {\begin{array}{*{20}{c}} a&{\cot \frac{A}{2}}&\lambda \\ b&{\cot \frac{B}{2}}&\mu \\ c&{\cot \frac{C}{2}}&\gamma \end{array}} \right| = 0,\]    where $$a, b, c, A, B,$$   and $$C$$ are elements of a triangle $$ABC$$  with usual meaning. Then, the value of a $$\left( {\mu - \gamma } \right) + b\left( {\gamma - \lambda } \right) + c\left( {\lambda - \mu } \right) = 0$$        is

A $$0$$
B $$abc$$
C $$ab + bc + ca$$
D $$2abc$$
Answer :   $$0$$

38. Let \[A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}&1\\ 2&1&{ - 3}\\ 1&1&1 \end{array}} \right)\]    and 10 \[B = \left( {\begin{array}{*{20}{c}} 4&2&2\\ { - 5}&0&\alpha \\ 1&{ - 2}&3 \end{array}} \right).\]     If $$B$$ is the inverse of matrix $$A,$$ then $$\alpha$$ is

A $$5$$
B $$- 1$$
C $$2$$
D $$ - 2$$
Answer :   $$5$$

39. If $${a_r} = {\left( {\cos 2r\pi + i\sin 2r\pi } \right)^{\frac{1}{9}}},$$      then the value of \[\left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{a_4}}&{{a_5}}&{{a_6}}\\ {{a_7}}&{{a_8}}&{{a_9}} \end{array}} \right|\]   is

A $$1$$
B $$ - 1$$
C $$0$$
D None of these
Answer :   $$0$$

40. If the determinant \[\left| {\begin{array}{*{20}{c}} {\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\ {{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\ {\cos 4x}&{{{\cos }^2}x}&{\cos 2x} \end{array}} \right|\]     is expanded in powers of $$\sin x$$  then the constant term in the expansion is

A $$1$$
B $$2$$
C $$- 1$$
D None of these
Answer :   $$- 1$$