43.
If $${a_1},{a_2},{a_3},.....$$ are positive numbers in G.P. then the value of \[\left| {\begin{array}{*{20}{c}}
{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\
{\log {a_{n + 1}}}&{\log {a_{n + 2}}}&{\log {a_{n + 3}}}\\
{\log {a_{n + 2}}}&{\log {a_{n + 3}}}&{\log {a_{n + 4}}}
\end{array}} \right|\]
A
1
B
4
C
3
D
0
Answer :
0
If the G.P. be $$a,ar,a{r^2},.....$$ then $${a_n} = a{r^{n - 1}}$$
\[D = \left| {\begin{array}{*{20}{c}}
{\log a + \left( {n - 1} \right)\log r}&{\log a + n \log r}&{\log a + \left( {n + 1} \right)\log r}\\
{\log a + n\log r}&{\log a + \left( {n + 1} \right)\log r}&{\log a + \left( {n + 2} \right)\log r}\\
{\log a + \left( {n + 1} \right)\log r}&{\log a + \left( {n + 2} \right)\log r}&{\log a + \left( {n + 3} \right)\log r}
\end{array}} \right|\]
$${R_3} \to {R_3} - {R_2}$$ and $${R_2} \to {R_2} - {R_1}$$ gives,
\[ = \left| {\begin{array}{*{20}{c}}
{\log a + \left( {n - 1} \right)\log r}&{\log a + n \log r}&{\log a + \left( {n + 1} \right)\log r}\\
{\log r}&{\log r}&{\log r}\\
{\log r}&{\log r}&{\log r}
\end{array}} \right|\]
= 0, since $$R_2$$ and $$R_3$$ are identical.
44.
If \[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1}&1 \\
1&2&0 \\
1&3&0
\end{array}} \right]\] then the value of $$\left| {{\text{adj}}\,A} \right|$$ is equal to
45.
If the system of linear equations
$$\eqalign{
& x + ky + 3z = 0 \cr
& \,3x + ky - 2z = 0 \cr
& 2x + 4y - 3z = 0 \cr} $$
has a non-zero solution $$(x, y, z),$$ then $$\frac{{xz}}{{{y^2}}}$$ is equal to:
A
10
B
$$- 30$$
C
30
D
$$- 10$$
Answer :
10
For non - zero solution of the system of linear equations;
\[\left| \begin{array}{l}
1\,\,\,\,\,\,\,\,\,\,\,\,k\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3\\
3\,\,\,\,\,\,\,\,\,\,\,k\,\,\,\,\,\,\,\,\, - 2\\
2\,\,\,\,\,\,\,\,\,\,\,4\,\,\,\,\,\,\,\,\, - 3
\end{array} \right| = 0\]
$$ \Rightarrow \,\,k = 11$$
Now equations become
$$\eqalign{
& x + 11y + 3z = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,.....\left( 1 \right) \cr
& \,3x + 11y - 2z = 0\,\,\,\,\,\,\,\,\,\,.....\left( 2 \right) \cr
& 2x + 4y - 3z = 0\,\,\,\,\,\,\,\,\,\,.....\left( 3 \right) \cr} $$
Adding equations (1) & (3) we get
$$\eqalign{
& 3x + 15y = 0 \cr
& \Rightarrow \,\,x = - 5y \cr} $$
Now put $$x = - 5y$$ in equation (1), we get
$$\eqalign{
& - 5y + 11y + 3z = 0 \cr
& \Rightarrow \,\,z = - 2y \cr
& \therefore \frac{{xz}}{{{y^2}}} = \frac{{\left( { - 5y} \right)\left( { - 2y} \right)}}{{{y^2}}} = 10 \cr} $$
46.
The parameter, on which the value of the determinant \[\left| \begin{array}{l}
\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{a^2}\\
\cos \left( {p - d} \right)x\,\,\,\,\,\,\,\,\,\,\cos px\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \left( {p + d} \right)x\\
\sin \left( {p - d} \right)x\,\,\,\,\,\,\,\,\,\,\,\sin px\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sin \left( {p + d} \right)x
\end{array} \right|\]
does not depend upon is
48.
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1}\\
2&3
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
2&3\\
{ - 1}&{ - 2}
\end{array}} \right]\] then which of the following is/are correct ?
$$1.AB\left( {{A^{ - 1}}{B^{ - 1}}} \right),$$ is a unit matrix.
$$2.{\left( {AB} \right)^{ - 1}} = {A^{ - 1}}{B^{ - 1}}$$
Select the correct answer using the code given below :