Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

41. \[\left| {\begin{array}{*{20}{c}} {\cos C}&{\tan A}&0 \\ {\sin B}&0&{ - \tan A} \\ 0&{\sin B}&{\cos C} \end{array}} \right|\]     has the value

A $$0$$
B $$1$$
C $$\sin A\sin B\cos C$$
D None of these
Answer :   $$0$$

42. Let \[A = \left[ \begin{array}{l} 1\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,1\\ 2\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\, - 3\\ 1\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,1 \end{array} \right]\]     and \[{\rm{10}}\,B = \left[ \begin{array}{l} \,\,\,\,4\,\,\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,2\\ - 5\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\alpha \\ \,\,\,\,1\,\,\,\, - 2\,\,\,\,\,\,\,\,\,\,3 \end{array} \right].\]     If $$B$$  is the inverse of matrix $$A,$$ then $$\alpha $$ is

A 5
B $$- 1$$
C 2
D $$- 2$$
Answer :   5

43. If $${a_1},{a_2},{a_3},.....$$   are positive numbers in G.P. then the value of \[\left| {\begin{array}{*{20}{c}} {\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\ {\log {a_{n + 1}}}&{\log {a_{n + 2}}}&{\log {a_{n + 3}}}\\ {\log {a_{n + 2}}}&{\log {a_{n + 3}}}&{\log {a_{n + 4}}} \end{array}} \right|\]

A 1
B 4
C 3
D 0
Answer :   0

44. If \[A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&1 \\ 1&2&0 \\ 1&3&0 \end{array}} \right]\]    then the value of $$\left| {{\text{adj}}\,A} \right|$$  is equal to

A $$5$$
B $$0$$
C $$1$$
D None of these
Answer :   $$1$$

45. If the system of linear equations
$$\eqalign{ & x + ky + 3z = 0 \cr & \,3x + ky - 2z = 0 \cr & 2x + 4y - 3z = 0 \cr} $$
has a non-zero solution $$(x, y, z),$$  then $$\frac{{xz}}{{{y^2}}}$$  is equal to:

A 10
B $$- 30$$
C 30
D $$- 10$$
Answer :   10

46. The parameter, on which the value of the determinant \[\left| \begin{array}{l} \,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{a^2}\\ \cos \left( {p - d} \right)x\,\,\,\,\,\,\,\,\,\,\cos px\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \left( {p + d} \right)x\\ \sin \left( {p - d} \right)x\,\,\,\,\,\,\,\,\,\,\,\sin px\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sin \left( {p + d} \right)x \end{array} \right|\]         does not depend upon is

A $$a$$
B $$p$$
C $$d$$
D $$x$$
Answer :   $$p$$

47. For all values of $$A, B, C$$  and $$P, Q, R$$  the value of the determinant \[{\left( {x + a} \right)^3}\left| {\begin{array}{*{20}{c}} {\cos \left( {A - P} \right)}&{\cos \left( {A - Q} \right)}&{\cos \left( {A - R} \right)}\\ {\cos \left( {B - P} \right)}&{\cos \left( {B - Q} \right)}&{\cos \left( {B - R} \right)}\\ {\cos \left( {C - P} \right)}&{\cos \left( {C - Q} \right)}&{\cos \left( {C - R} \right)} \end{array}} \right|\]          is

A 1
B 0
C 2
D None of these
Answer :   0

48. \[A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 2&3 \end{array}} \right]\]   and \[B = \left[ {\begin{array}{*{20}{c}} 2&3\\ { - 1}&{ - 2} \end{array}} \right]\]    then which of the following is/are correct ?
$$1.AB\left( {{A^{ - 1}}{B^{ - 1}}} \right),$$    is a unit matrix.
$$2.{\left( {AB} \right)^{ - 1}} = {A^{ - 1}}{B^{ - 1}}$$
Select the correct answer using the code given below :

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   Neither 1 nor 2

49. If $$C$$ is skew-symmetric matrix of order $$n$$ and $$X$$ is $$n \times 1$$  column matrix, then $$X'CX$$  is a

A scalar matrix
B unit matrix
C null matrix
D None of these
Answer :   null matrix

50. Let \[\left| {\begin{array}{*{20}{c}} {{\lambda ^2} + 3\lambda }&{\lambda - 1}&{\lambda + 3} \\ {\lambda + 1}&{ - 2\lambda }&{\lambda - 4} \\ {\lambda - 3}&{\lambda + 4}&{3\lambda } \end{array}} \right| = p{\lambda ^4} + q{\lambda ^3} + r{\lambda ^2} + s\lambda + t\]           be an identity in $$\lambda $$ where $$p, q, r, s, t$$   are independent of $$\lambda .$$ Then the value of $$t$$ is

A 4
B 0
C 1
D None of these
Answer :   0