73.
If \[{A} = \left[ {\begin{array}{*{20}{c}}
1&0\\
{ - 1}&7
\end{array}} \right]\] and \[{I} = \left[ {\begin{array}{*{20}{c}}
1&0\\
{ 0}&1
\end{array}} \right],\] then the value of $$k$$ so that $$A^2 = 8A + kI$$ is
74.
Consider the system of linear equations
$$\eqalign{
& {a_1}x + {b_1}y + {c_1}z + {d_1} = 0, \cr
& {a_2}x + {b_2}y + {c_2}z + {d_2} = 0, \cr
& {a_3}x + {b_3}y + {c_3}z + {d_3} = 0, \cr} $$
Let us denote by $$\Delta \left( {a,b,c} \right)$$ the determinant \[\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}}\\
{{a_2}}&{{b_2}}&{{c_2}}\\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right|,\] if $$\Delta \left( {a,b,c} \right)\# \,0,$$ then the value of $$x$$ in the unique solution of the above equations is
A
$$\frac{{\Delta \left( {b,c,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$
B
$$\frac{{ - \Delta \left( {b,c,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$
C
$$\frac{{\Delta \left( {a,c,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$
D
$$ - \frac{{\Delta \left( {a,b,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$
78.
The value of \[\left| {\begin{array}{*{20}{c}}
{{i^m}}&{{i^{m + 1}}}&{{i^{m + 2}}} \\
{{i^{m + 5}}}&{{i^{m + 4}}}&{{i^{m + 3}}} \\
{{i^{m + 6}}}&{{i^{m + 7}}}&{{i^{m + 8}}}
\end{array}} \right|,\] where $$i = \sqrt { - 1} ,$$ is
A
$$1$$ if $$m$$ is a multiple of $$4$$
B
$$0$$ for all real $$m$$
C
$$- i$$ if $$m$$ is a multiple of $$3$$
D
None of these
Answer :
$$0$$ for all real $$m$$
\[\begin{array}{l}
\left| {\begin{array}{*{20}{c}}
{{i^m}}&{{i^{m + 1}}}&{{i^{m + 2}}}\\
{{i^{m + 5}}}&{{i^{m + 4}}}&{{i^{m + 3}}}\\
{{i^{m + 6}}}&{{i^{m + 7}}}&{{i^{m + 8}}}
\end{array}} \right|\\
= {i^m}{i^{m + 1}}{i^{m + 2}}\left| \begin{array}{l}
1\,\,\,\,\,\,\,1\,\,\,\,\,\,\,1\\
{i^5}\,\,\,\,{i^3}\,\,\,\,i\\
{i^6}\,\,\,\,{i^6}\,\,\,\,{i^6}
\end{array} \right|\\
= {i^{3m + 3}}{i^6}\left| \begin{array}{l}
1\,\,\,\,\,1\,\,\,\,\,1\\
{i^5}\,\,\,{i^3}\,\,\,\,i\\
1\,\,\,\,\,1\,\,\,\,\,1
\end{array} \right|\\
= 0
\end{array}\]
Hence, for all real $$m,$$ the value of given determinant is 0.
79.
If $$B, C$$ are square matrices of order $$n$$ and if $$A = B + C, BC = CB, C^2 = 0,$$ then for any positive integer $$N,$$ $${A^{N + 1}} = {B^K}\left[ {B + \left( {N + 1} \right)C} \right],$$ then $$\frac{K}{N}$$ is
80.
If \[X = \left[ {\begin{array}{*{20}{c}}
1&{ - 2}\\
0&3
\end{array}} \right],\] and $$I$$ is a $$2 \times 2$$ identity matrix, then $$X^2 – 2X + 3I$$ equals to which one of the following ?