Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

71. If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A 0
B 1
C $$i$$
D $$\omega $$
Answer :   0

72. If \[A = \left[ \begin{array}{l} \,\,2\,\,\,\,\,\, - 3\\ - 4\,\,\,\,\,\,\,\,1 \end{array} \right],\]    then $$adj\left( {3{A^2} + 12A} \right)$$    is equal to:

A \[\left[ \begin{array}{l} \,\,72\,\,\,\,\,\, - 63\\ - 84\,\,\,\,\,\,\,\,51 \end{array} \right]\]
B \[\left[ \begin{array}{l} \,\,72\,\,\,\,\,\, - 84\\ - 63\,\,\,\,\,\,\,\,51 \end{array} \right]\]
C \[\left[ \begin{array}{l} 51\,\,\,\,\,\,\,63\\ 84\,\,\,\,\,\,\,72 \end{array} \right]\]
D \[\left[ \begin{array}{l} 51\,\,\,\,\,\,\,84\\ 63\,\,\,\,\,\,\,72 \end{array} \right]\]
Answer :   \[\left[ \begin{array}{l} 51\,\,\,\,\,\,\,63\\ 84\,\,\,\,\,\,\,72 \end{array} \right]\]

73. If \[{A} = \left[ {\begin{array}{*{20}{c}} 1&0\\ { - 1}&7 \end{array}} \right]\]   and \[{I} = \left[ {\begin{array}{*{20}{c}} 1&0\\ { 0}&1 \end{array}} \right],\]   then the value of $$k$$ so that $$A^2 = 8A + kI$$   is

A $$k = 7$$
B $$k = - 7$$
C $$k = 0$$
D None of these
Answer :   $$k = - 7$$

74. Consider the system of linear equations
$$\eqalign{ & {a_1}x + {b_1}y + {c_1}z + {d_1} = 0, \cr & {a_2}x + {b_2}y + {c_2}z + {d_2} = 0, \cr & {a_3}x + {b_3}y + {c_3}z + {d_3} = 0, \cr} $$
Let us denote by $$\Delta \left( {a,b,c} \right)$$   the determinant \[\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\]   if $$\Delta \left( {a,b,c} \right)\# \,0,$$   then the value of $$x$$ in the unique solution of the above equations is

A $$\frac{{\Delta \left( {b,c,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$
B $$\frac{{ - \Delta \left( {b,c,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$
C $$\frac{{\Delta \left( {a,c,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$
D $$ - \frac{{\Delta \left( {a,b,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$
Answer :   $$\frac{{\Delta \left( {b,c,d} \right)}}{{\Delta \left( {a,b,c} \right)}}$$

75. If \[A = \left[ {\begin{array}{*{20}{c}} 0&c&{ - b}\\ { - c}&0&a\\ b&{ - a}&0 \end{array}} \right]\]    and \[B = \left[ {\begin{array}{*{20}{c}} {{a^2}}&{ab}&{ac}\\ {ab}&{{b^2}}&{bc}\\ {ac}&{bc}&{{c^2}} \end{array}} \right],\]    then $$AB$$  is equal to

A $$B$$
B $$A$$
C $$O$$
D $$I$$
Answer :   $$O$$

76. The system of linear equations
$$\eqalign{ & x + y + z = 2 \cr & 2x + 3y + 2z = 5 \cr & 2x + 3y + \left( {{a^2} - 1} \right)z = a + 1 \cr} $$

A is inconsistent when $$a = 4$$
B has unique solution for $$\left| a \right| = \sqrt 3 $$
C has infinitely many solutions for $$a = 4$$
D is inconsistent when $$\left| a \right| = \sqrt 3 $$
Answer :   is inconsistent when $$\left| a \right| = \sqrt 3 $$

77. If $$AB = 0$$  where \[A = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\ {\cos \theta \sin \theta }&{{{\sin }^2}\theta } \end{array}} \right]\]      and \[B = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\ {\cos \phi \sin \phi }&{{{\sin }^2}\phi } \end{array}} \right]\]      then $$\left| {\theta - \phi } \right|$$  is equal to

A $$0$$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{4}$$
D $$\pi $$
Answer :   $$\frac{\pi }{2}$$

78. The value of \[\left| {\begin{array}{*{20}{c}} {{i^m}}&{{i^{m + 1}}}&{{i^{m + 2}}} \\ {{i^{m + 5}}}&{{i^{m + 4}}}&{{i^{m + 3}}} \\ {{i^{m + 6}}}&{{i^{m + 7}}}&{{i^{m + 8}}} \end{array}} \right|,\]     where $$i = \sqrt { - 1} ,$$   is

A $$1$$ if $$m$$ is a multiple of $$4$$
B $$0$$ for all real $$m$$
C $$- i$$ if $$m$$ is a multiple of $$3$$
D None of these
Answer :   $$0$$ for all real $$m$$

79. If $$B, C$$  are square matrices of order $$n$$ and if $$A = B + C, BC = CB, C^2 = 0,$$      then for any positive integer $$N,$$ $${A^{N + 1}} = {B^K}\left[ {B + \left( {N + 1} \right)C} \right],$$      then $$\frac{K}{N}$$ is

A $$1$$
B $$\frac{1}{2}$$
C $$2$$
D None of these
Answer :   $$1$$

80. If \[X = \left[ {\begin{array}{*{20}{c}} 1&{ - 2}\\ 0&3 \end{array}} \right],\]   and $$I$$ is a $$2 \times 2$$  identity matrix, then $$X^2 – 2X + 3I$$   equals to which one of the following ?

A $$- I$$
B $$- 2X$$
C $$2X$$
D $$4X$$
Answer :   $$2X$$