Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

111. If $$z{\left( {2 - i2\sqrt 3 } \right)^2} = i{\left( {\sqrt 3 + i} \right)^4}$$     then amplitude of $$z$$ is

A $$\frac{{5\pi }}{6}$$
B $$ - \frac{{\pi }}{6}$$
C $$\frac{{\pi }}{6}$$
D $$\frac{{7\pi }}{6}$$
Answer :   $$ - \frac{{\pi }}{6}$$

112. A value of $$\theta $$ for which $$\frac{{2 + 3i\sin \theta }}{{1 - 2i\sin \theta }}$$   is purely imaginary, is:

A $${\sin ^{ - 1}}\left( {\frac{{\sqrt 3 }}{4}} \right)$$
B $${\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{6}$$
Answer :   $${\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)$$

113. Let $$\alpha ,\beta $$  be real and $$z$$ be a complex number. If $${z^2} + \alpha z + \beta = 0$$    has two distinct roots on the line $${\text{Re }} z = 1,$$   then it is necessary that :

A $$\beta \in \left( { - 1,0} \right)$$
B $$\left| \beta \right| = 1$$
C $$\beta \in \left( {1,\infty } \right)$$
D $$\beta \in \left( {0,1} \right)$$
Answer :   $$\beta \in \left( {1,\infty } \right)$$

114. If $${z_1} \ne - {z_2}$$  and $$\left| {{z_1} + {z_2}} \right| = \left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}}} \right|$$     then

A at least one of $${z_1},{z_2}$$  is unimodular
B both $${z_1},{z_2}$$  are unimodular
C $${z_1} \cdot {z_2}$$  is unimodular
D None of these
Answer :   $${z_1} \cdot {z_2}$$  is unimodular

115. If $$z = \frac{{ - 2\left( {1 + 2i} \right)}}{{3 + i}}$$    where $$i = \sqrt { - 1} ,$$  then argument $$\theta \left( { - \pi < \theta \leqslant \pi } \right)$$    of $$z$$ is

A $$\frac{3\pi }{4}$$
B $$\frac{\pi }{4}$$
C $$\frac{5\pi }{6}$$
D $$ - \frac{3\pi }{4}$$
Answer :   $$\frac{\pi }{4}$$

116. If $$z = x + iy$$   such that $$\left| {z + 1} \right| = \left| {z - 1} \right|$$    and $${\text{amp}}\frac{{z - 1}}{{z + 1}} = \frac{\pi }{4}$$    then

A $$x = \sqrt 2 + 1,y = 0$$
B $$x = 0,y = \sqrt 2 + 1$$
C $$x = 0,y = \sqrt 2 - 1$$
D $$x = \sqrt 2 - 1,y = 0$$
Answer :   $$x = 0,y = \sqrt 2 + 1$$

117. If $$n$$ is a positive integer grater than unity and $$z$$ is a complex satisfying the equation $${z^n} = {\left( {z + 1} \right)^n},$$   then

A $$\operatorname{Re} \left( z \right) < 2$$
B $$\operatorname{Re} \left( z \right) > 0$$
C $$\operatorname{Re} \left( z \right) = 0$$
D $$z$$ lies on $$x = - \frac{1}{2}$$
Answer :   $$z$$ lies on $$x = - \frac{1}{2}$$

118. Let $$\lambda \in R.$$  If the origin and the non-real roots of $$2{z^2} + 2z + \lambda = 0$$    form the three vertices of an equilateral triangle in the Argand plane then $$\lambda $$ is

A $$1$$
B $$\frac{2}{3}$$
C $$2$$
D $$ - 1$$
Answer :   $$\frac{2}{3}$$

119. The equation $$\left| {z - i} \right| + \left| {z + i} \right| = k,k > 0,$$      can represent an ellipse if $$k$$ is

A $$1$$
B $$2$$
C $$4$$
D None of these
Answer :   $$4$$

120. If $${\left( {a + ib} \right)^5} = \alpha + i\beta $$     then $${\left( {b + ia} \right)^5}$$  is equal to

A $$\beta + i\alpha $$
B $$ \alpha - i\beta $$
C $$\beta - i\alpha $$
D $$ - \alpha - i\beta $$
Answer :   $$\beta + i\alpha $$