102.
The number of values of $$k$$ for which the system of equations $$\left( {k + 1} \right)x + 8y = 4k;kx + \left( {k + 3} \right)y = 3k - 1$$ has infinitely many solutions is
A
0
B
1
C
2
D
infinite
Answer :
1
For infinitely many solutions the two equations become identical
$$\eqalign{
& \Rightarrow \frac{{k + 1}}{k} = \frac{8}{{k + 3}} = \frac{{4k}}{{3k - 1}} \cr
& \Rightarrow k = 1. \cr} $$
103.
If the system of equations
$$\eqalign{
& ax + by + c = 0 \cr
& bx + cy + a = 0 \cr
& cx + ay + b = 0 \cr} $$
has a solution then the system of equations
$$\eqalign{
& \left( {b + c} \right)x + \left( {c + a} \right)y + \left( {a + b} \right)z = 0 \cr
& \left( {c + a} \right)x + \left( {a + b} \right)y + \left( {b + c} \right)z = 0 \cr
& \left( {a + b} \right)x + \left( {b + c} \right)y + \left( {c + a} \right)z = 0 \cr} $$
has
A
only one solution
B
no solution
C
infinite number of solutions
D
None of these
Answer :
infinite number of solutions
For existence of a solution of the first system,
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = 0.\]
The second system will have a nontrivial solution if we can prove that
\[\left| {\begin{array}{*{20}{c}}
{b + c}&{c + a}&{a + b} \\
{c + a}&{a + b}&{b + c} \\
{a + b}&{b + c}&{c + a}
\end{array}} \right| = 0.\]
Establish \[\left| {\begin{array}{*{20}{c}}
{b + c}&{c + a}&{a + b} \\
{c + a}&{a + b}&{b + c} \\
{a + b}&{b + c}&{c + a}
\end{array}} \right| = 2\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right| = 0.\]
Remember that the existence of one nontrivial solution implies existence of infinite number of non-trivial solutions
104.
If $$C = 2\cos \theta ,$$ then the value of the determinant \[\Delta = \left[ {\begin{array}{*{20}{c}}
C&1&0\\
1&C&1\\
6&1&C
\end{array}} \right]\] is
A
$$\frac{{2\,{{\sin }^2}2\theta }}{{\sin \theta }}$$
B
$$8\,{\cos ^3}\theta - 4\cos \theta + 6$$
C
$$\frac{{2\,{{\sin }}2\theta }}{{\sin \theta }}$$
107.
If $$\sqrt { - 1} = i,$$ and $$\omega $$ is a non-real cube root of unity then the value of \[\left| {\begin{array}{*{20}{c}}
1&{{\omega ^2}}&{1 + i + {\omega ^2}} \\
{ - i}&{ - 1}&{ - 1 - i + \omega } \\
{1 - i}&{{\omega ^2} - 1}&{ - 1}
\end{array}} \right|\] is equal to
A
$$1$$
B
$$i$$
C
$$\omega $$
D
$$0$$
Answer :
$$0$$
Use $${R_1} \to {R_1} + {R_2} - {R_3}.$$
108.
If $$A$$ is symmetric as well as skew-symmetric matrix, then $$A$$ is
A
Diagonal
B
Null
C
Triangular
D
None of these
Answer :
Null
Let, $$A = {\left[ {{a_{ij}}} \right]_{n \times m}}.$$
Since $$A$$ is skew-symmetric $$a_{ii} = 0$$
$$\left( {i = 1,2,.....,n} \right){\text{ and }}{a_{ji}} = - {a_{ji}}\left( {i \ne j} \right)$$
Also, $$A$$ is symmetric so $${a_{ji}} = {a_{ji}}\forall i{\text{ and }}j$$
$$\therefore {a_{ji}} = 0\,\,\forall \,\,i \ne j$$
Hence, $${a_{ji}} = 0\,\,\forall \,\,i{\text{ and }}j$$
⇒ $$A$$ is a null zero matrix.
109.
If $$adj\,B = A,\left| P \right| = \left| Q \right| = 1,$$ then $$adj\,\left( {{Q^{ - 1}}B{P^{ - 1}}} \right)$$ is
110.
If $$A$$ and $$B$$ be two square matrices of order $$\lambda $$ whose all the elements are essentially positive integers then the minimum value of $$tr\left( {A{B^2}} \right)$$ is equal to