Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

161. If $$a \ne b \ne c$$   are all positive, then the value of the determinant \[\left| {\begin{array}{*{20}{c}} a&b&c\\ b&c&a\\ c&a&b \end{array}} \right|\]   is

A non-negative
B non-positive
C negative
D positive
Answer :   negative

162. If $$A, B$$  and $$C$$ are the angles of a triangle and \[\left| {\begin{array}{*{20}{c}} 1&1&1\\ {1 + \sin A}&{1 + \sin B}&{1 + \sin C}\\ {\sin A + {{\sin }^2}A}&{\sin B + {{\sin }^2}B}&{\sin C + {{\sin }^2}C} \end{array}} \right| = 0,\]          then the triangle must be

A Isosceles
B Equilateral
C Right-angled
D None of these
Answer :   Isosceles

163. Consider the matrices \[A = \left[ {\begin{array}{*{20}{c}} 4&6&{ - 1}\\ 3&0&2\\ 1&{ - 2}&5 \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 2&4\\ 0&1\\ { - 1}&2 \end{array}} \right],C = \left[ {\begin{array}{*{20}{c}} 3\\ 1\\ 2 \end{array}} \right]\]         Out of the given matrix products, which one is not defined

A $${\left( {AB} \right)^T}C$$
B $${C^T}C{\left( {AB} \right)^T}$$
C $${C^T}AB$$
D $${A^T}AB{B^T}C$$
Answer :   $${C^T}C{\left( {AB} \right)^T}$$

164. Let $$\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}.$$    Then the value of the determinant \[\left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\, - 1 - {\omega ^2}\,\,\,\,\,\,\,\,\,\,{\omega ^2}\\ 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^4}\,\,\, \end{array} \right|\]     is

A $$3\omega $$
B $$3\omega \left( {\omega - 1} \right)$$
C $$3{\omega ^2}$$
D $$3\omega \left( {1 - \omega } \right)$$
Answer :   $$3\omega \left( {\omega - 1} \right)$$

165. If \[A = \left[ \begin{array}{l} 1\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,2\\ 2\,\,\,\,\,\,\,1\,\,\,\,\,\, - 2\\ a\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,b \end{array} \right]\,\,\]   is a matrix satisfying the equation $$A{A^T} = 9I,$$   where $$I$$ is $$3 \times 3$$  identity matrix, then the ordered pair $$(a, b)$$  is equal to:

A $$(2, 1)$$
B $$(- 2, - 1)$$
C $$(2, - 1)$$
D $$(- 2, 1)$$
Answer :   $$(- 2, - 1)$$

166. If $$AB = 0,$$   then for the matrices \[A = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\theta }&{\cos \theta \sin \theta }\\ {\cos \theta \sin \theta }&{{{\sin }^2}\theta } \end{array}} \right]\]      and \[B = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\phi }&{\cos \phi \sin \phi }\\ {\cos \phi \sin \phi }&{{{\sin }^2}\phi } \end{array}} \right],\]      $$\theta - \phi $$  is

A an odd number of $$\frac{\pi }{2}$$
B an odd multiple of $$\pi$$
C an even multiple of $$\frac{\pi }{2}$$
D $$0$$
Answer :   an odd number of $$\frac{\pi }{2}$$

167. If the value of the determinant \[\left| {\begin{array}{*{20}{c}} a&1&1\\ 1&b&1\\ 1&1&c \end{array}} \right|\]   is positive, where $$a \ne b \ne c,$$   then the value of $$abc$$

A cannot be less than $$1$$
B is greater than $$– 8$$
C is less than $$– 8$$
D must be greater than $$8$$
Answer :   is greater than $$– 8$$

168. The equations $$2x + 3y + 4 = 0; 3x + 4y + 6 = 0$$       and $$4x + 5y + 8 = 0$$    are

A consistent with unique solution
B inconsistent
C consistent with infinitely many solutions
D None of the above
Answer :   consistent with unique solution

169. Let \[\left| {\begin{array}{*{20}{c}} {1 + x}&x&{{x^2}} \\ x&{1 + x}&{{x^2}} \\ {{x^2}}&x&{1 + x} \end{array}} \right| = a{x^5} + b{x^4} + c{x^3} + d{x^2} + \lambda x + \mu \]            be an identity in $$x,$$ where $$a, b, c, d,$$  $$\lambda ,\mu $$  are independent of $$x.$$ Then the value of $$\lambda$$ is

A 3
B 2
C 4
D None of these
Answer :   3

170. If $$A$$ is a square matrix of order 3 with $$\left| A \right| \ne 0,$$  then which one of the following is correct ?

A $$\left| {adj\,A} \right| = \left| A \right|$$
B $$\left| {adj\,A} \right| = \left| A \right|^2$$
C $$\left| {adj\,A} \right| = \left| A \right|^3$$
D $$\left| {adj\,A} \right|^2 = \left| A \right|$$
Answer :   $$\left| {adj\,A} \right| = \left| A \right|^2$$