Matrices and Determinants MCQ Questions & Answers in Algebra | Maths
Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
161.
If $$a \ne b \ne c$$ are all positive, then the value of the determinant \[\left| {\begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array}} \right|\] is
A
non-negative
B
non-positive
C
negative
D
positive
Answer :
negative
\[\left| {\begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{a + b + c}&b&c\\
{a + b + c}&c&a\\
{a + b + c}&a&b
\end{array}} \right|\]
$$\left( {\because {C_1} \to {C_1} + {C_2} + {C_3}} \right)$$
\[ = \left( {a + b + c} \right)\left| {\begin{array}{*{20}{c}}
1&b&c\\
1&c&a\\
1&a&b
\end{array}} \right|\]
[ on taking $$(a + b + c)$$ common from $$C_1$$ ]
$$\eqalign{
& = \left( {a + b + c} \right)\left[ {1\left( {bc - {a^2}} \right) - b\left( {b - a} \right) + c\left( {a - c} \right)} \right] \cr
& = \left( {a + b + c} \right)\left[ {bc - {a^2} - {b^2} + ab + ac - {c^2}} \right] \cr
& = \left( {a + b + c} \right)\left[ { - \left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)} \right] \cr
& = - \frac{1}{2}\left( {a + b + c} \right)\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right] \cr} $$
Hence, the determinant is negative value.
162.
If $$A, B$$ and $$C$$ are the angles of a triangle and \[\left| {\begin{array}{*{20}{c}}
1&1&1\\
{1 + \sin A}&{1 + \sin B}&{1 + \sin C}\\
{\sin A + {{\sin }^2}A}&{\sin B + {{\sin }^2}B}&{\sin C + {{\sin }^2}C}
\end{array}} \right| = 0,\] then the triangle must be
A
Isosceles
B
Equilateral
C
Right-angled
D
None of these
Answer :
Isosceles
Using $${C_2} \to {C_2} - {C_1}$$ and $${C_3} \to {C_3} - {C_1}$$ in the given determinant, we have
\[\Delta = \left| {\begin{array}{*{20}{c}}
1&0&0\\
{1 + \sin A}&{\sin B - \sin A}&{\sin \,C - \sin \,A}\\
{\sin \,A + {{\sin }^2}A}&{{{\sin }^2}B - {{\sin }^2}A}&{{{\sin }^2}C - {{\sin }^2}A}
\end{array}} \right|\]
Now taking $$\sin \,B - \sin \,A$$ common from $$C_2$$ and $${\sin \,C - \sin \,A}$$ common from $$C_3,$$ we have
$$\Delta = \left( {\sin \,B - \sin \,A} \right)\,\left( {\sin \,C - \sin \,A} \right)$$
\[\left| {\begin{array}{*{20}{c}}
1&0&0\\
{1 + \sin A}&1&1\\
{\sin \,A + {{\sin }^2}A}&{\sin \,B + \sin \,A}&{\sin \,C + \sin \,A}
\end{array}} \right|\]
$$ = \,\left( {\sin \,B - \sin \,A} \right)\,\left( {\sin \,C - \sin \,A} \right)\,\left( {\sin \,C - \sin \,B} \right).$$
As the determinant is zero, we must have $$\sin B = \sin A{\text{ or }}\sin A{\text{ or }}\sin C = \sin A{\text{ or }}\sin C = \sin B,{\text{ that is, }}B = A{\text{ or }}C = A{\text{ or }}C = B.$$
In all three cases we will have an isosceles triangle.
163.
Consider the matrices \[A = \left[ {\begin{array}{*{20}{c}}
4&6&{ - 1}\\
3&0&2\\
1&{ - 2}&5
\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}
2&4\\
0&1\\
{ - 1}&2
\end{array}} \right],C = \left[ {\begin{array}{*{20}{c}}
3\\
1\\
2
\end{array}} \right]\] Out of the given matrix products, which one is not defined
164.
Let $$\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}.$$ Then the value of the determinant \[\left| \begin{array}{l}
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\
1\,\,\,\,\, - 1 - {\omega ^2}\,\,\,\,\,\,\,\,\,\,{\omega ^2}\\
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^4}\,\,\,
\end{array} \right|\] is
165.
If \[A = \left[ \begin{array}{l}
1\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,2\\
2\,\,\,\,\,\,\,1\,\,\,\,\,\, - 2\\
a\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,b
\end{array} \right]\,\,\] is a matrix satisfying the equation $$A{A^T} = 9I,$$ where $$I$$ is $$3 \times 3$$ identity matrix, then the ordered pair $$(a, b)$$ is equal to:
167.
If the value of the determinant \[\left| {\begin{array}{*{20}{c}}
a&1&1\\
1&b&1\\
1&1&c
\end{array}} \right|\] is positive, where $$a \ne b \ne c,$$ then the value of $$abc$$
168.
The equations $$2x + 3y + 4 = 0; 3x + 4y + 6 = 0$$ and $$4x + 5y + 8 = 0$$ are
A
consistent with unique solution
B
inconsistent
C
consistent with infinitely many solutions
D
None of the above
Answer :
consistent with unique solution
Consider first two equations :
$$2x + 3y = - 4$$ and $$3x + 4y = - 6$$
We have, \[\Delta = \left| {\begin{array}{*{20}{c}}
2&3\\
3&4
\end{array}} \right| = - 1 \ne 0\]
\[{\Delta _x} = \left| {\begin{array}{*{20}{c}}
{ - 4}&3\\
{ - 6}&4
\end{array}} \right| = 2\,\,{\rm{and }}\,\,{\Delta _y} = \left| {\begin{array}{*{20}{c}}
2&{ - 4}\\
3&{ - 6}
\end{array}} \right| = 0\]
∴ $$x = - 2$$ and $$y = 0$$
Now this solution satisfies the third, so the equations are consistent with unique solution.
169.
Let \[\left| {\begin{array}{*{20}{c}}
{1 + x}&x&{{x^2}} \\
x&{1 + x}&{{x^2}} \\
{{x^2}}&x&{1 + x}
\end{array}} \right| = a{x^5} + b{x^4} + c{x^3} + d{x^2} + \lambda x + \mu \] be an identity in $$x,$$ where $$a, b, c, d,$$ $$\lambda ,\mu $$ are independent of $$x.$$ Then the value of $$\lambda$$ is
170.
If $$A$$ is a square matrix of order 3 with $$\left| A \right| \ne 0,$$ then which one of the following is correct ?
A
$$\left| {adj\,A} \right| = \left| A \right|$$
B
$$\left| {adj\,A} \right| = \left| A \right|^2$$
C
$$\left| {adj\,A} \right| = \left| A \right|^3$$
D
$$\left| {adj\,A} \right|^2 = \left| A \right|$$
Answer :
$$\left| {adj\,A} \right| = \left| A \right|^2$$
$$\left| {adj\,A} \right| = {\left| A \right|^{n - 1}}$$ { $$n$$ is order of square matrix }
If $$A$$ is square matrix of order 3, then $$\left| {adj\,A} \right| = {\left| A \right|^2}$$