82.
The system of linear equations
$$\eqalign{
& x + \lambda y - z = 0 \cr
& \lambda x - y - z = 0 \cr
& x + y - \lambda z = 0 \cr} $$
has a non-trivial solution for:
83.
If \[\left| {\begin{array}{*{20}{c}}
{{x^n}}&{{x^{n + 2}}}&{{x^{2n}}}\\
1&{{x^a}}&a\\
{{x^{n + 5}}}&{{x^{a + 6}}}&{{x^{2n + 5}}}
\end{array}} \right| = 0\,\,\forall \,\,x \in R,\] where $$n \in N$$ then value of $$'a'$$ is
A
$$n$$
B
$$n - 1$$
C
$$n + 1$$
D
None of these
Answer :
$$n + 1$$
Taking $$x^5$$ common from last row, we get
\[{x^5}\left| {\begin{array}{*{20}{c}}
{{x^n}}&{{x^{n + 2}}}&{{x^{2n}}}\\
1&{{x^a}}&a\\
{{x^n}}&{{x^{a + 1}}}&{{x^{2n}}}
\end{array}} \right| = 0\,\,\forall \,\,x \in R,\]
ā $$a + 1 = n + 2$$
ā $$a = n + 1$$
(as it will make first and third row identical)
84.
If \[f\left( x \right) = \left| {\begin{array}{*{20}{c}}
1&x&{x + 1} \\
{2x}&{x\left( {x - 1} \right)}&{x\left( {x + 1} \right)} \\
{3x\left( {x - 1} \right)}&{x\left( {x - 1} \right)\left( {x - 2} \right)}&{x\left( {{x^2} - 1} \right)}
\end{array}} \right|\] then $$f\left( {100} \right)$$ is equal to
85.
If $$A$$ and $$B$$ are square matrices of size $$n \times n$$ such that $${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right),$$ then which of the following will be always true ?
A
$$A = B$$
B
$$AB = BA$$
C
either of $$A$$ or $$B$$ is a zero matrix
D
either of $$A$$ or $$B$$ is identity matrix
Answer :
$$AB = BA$$
$$\eqalign{
& {A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right) \cr
& {A^2} - {B^2} = {A^2} + AB - BA - {B^2} \cr
& \Rightarrow AB = BA \cr} $$
86.
If \[\left| {\begin{array}{*{20}{c}}
{{b^2} + {c^2}}&{ab}&{ac} \\
{ba}&{{c^2} + {a^2}}&{bc} \\
{ca}&{cb}&{{a^2} + {b^2}}
\end{array}} \right| = \] square of a determinant \[\vartriangle \] of the third order then \[\vartriangle \] is equal to
A
\[\left| {\begin{array}{*{20}{c}}
0&c&b \\
c&0&a \\
b&a&0
\end{array}} \right|\]
B
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
b&c&a \\
c&a&b
\end{array}} \right|\]
87.
If $${a_1},{a_2},{a_3},......,{a_n},......$$ are in G.P., then the value of the determinant \[\left| \begin{array}{l}
\,\,\log {a_n}\,\,\,\,\,\,\,\,\log {a_{n + 1}}\,\,\,\,\,\,\,\,\,\,\log {a_{n + 2}}\\
\log {a_{n + 3}}\,\,\,\,\,\,\,\log {a_{n + 4}}\,\,\,\,\,\,\,\,\,\log {a_{n + 5}}\\
\log {a_{n + 6}}\,\,\,\,\,\,\,\log {a_{n + 7}}\,\,\,\,\,\,\,\,\,\log {a_{n + 8}}
\end{array} \right|,\] is
88.
If \[A = \left[ {\begin{array}{*{20}{c}}
\alpha &0\\
1&1
\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}
9&a\\
b&c
\end{array}} \right]\] and $$A^2 = B,$$ then the value of $$a + b + c$$ is
90.
If $$A$$ and $$B$$ are square matrices of size $$n \times n$$ such that $${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right),$$ then which of the following will be always true?