Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

81. If $$A_1 , A_3 , ..... , A_{2n–1}$$    are $$n$$ skew-symmetric matrices of same order, then $$B = \sum\limits_{r = 1}^n {\left( {2r - 1} \right){{\left( {{A_{2r - 1}}} \right)}^{2r - 1}}} $$      will be

A symmetric
B skew-symmetric
C neither symmetric nor skew-symmetric
D data is adequate
Answer :   skew-symmetric

82. The system of linear equations
$$\eqalign{ & x + \lambda y - z = 0 \cr & \lambda x - y - z = 0 \cr & x + y - \lambda z = 0 \cr} $$
has a non-trivial solution for:

A exactly two values of $$\lambda .$$
B exactly three values of $$\lambda .$$
C infinitely many values of $$\lambda .$$
D exactly one value of $$\lambda .$$
Answer :   exactly three values of $$\lambda .$$

83. If \[\left| {\begin{array}{*{20}{c}} {{x^n}}&{{x^{n + 2}}}&{{x^{2n}}}\\ 1&{{x^a}}&a\\ {{x^{n + 5}}}&{{x^{a + 6}}}&{{x^{2n + 5}}} \end{array}} \right| = 0\,\,\forall \,\,x \in R,\]       where $$n \in N$$  then value of $$'a'$$ is

A $$n$$
B $$n - 1$$
C $$n + 1$$
D None of these
Answer :   $$n + 1$$

84. If \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} 1&x&{x + 1} \\ {2x}&{x\left( {x - 1} \right)}&{x\left( {x + 1} \right)} \\ {3x\left( {x - 1} \right)}&{x\left( {x - 1} \right)\left( {x - 2} \right)}&{x\left( {{x^2} - 1} \right)} \end{array}} \right|\]           then $$f\left( {100} \right)$$  is equal to

A $$0$$
B $$1$$
C $$100$$
D $$ - 100$$
Answer :   $$0$$

85. If $$A$$ and $$B$$ are square matrices of size $$n \times n$$  such that $${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right),$$      then which of the following will be always true ?

A $$A = B$$
B $$AB = BA$$
C either of $$A$$ or $$B$$ is a zero matrix
D either of $$A$$ or $$B$$ is identity matrix
Answer :   $$AB = BA$$

86. If \[\left| {\begin{array}{*{20}{c}} {{b^2} + {c^2}}&{ab}&{ac} \\ {ba}&{{c^2} + {a^2}}&{bc} \\ {ca}&{cb}&{{a^2} + {b^2}} \end{array}} \right| = \]      square of a determinant \[\vartriangle \] of the third order then \[\vartriangle \] is equal to

A \[\left| {\begin{array}{*{20}{c}} 0&c&b \\ c&0&a \\ b&a&0 \end{array}} \right|\]
B \[\left| {\begin{array}{*{20}{c}} a&b&c \\ b&c&a \\ c&a&b \end{array}} \right|\]
C \[\left| {\begin{array}{*{20}{c}} 0&{ - c}&b \\ c&0&{ - a} \\ { - b}&{ - a}&0 \end{array}} \right|\]
D None of these
Answer :   \[\left| {\begin{array}{*{20}{c}} 0&c&b \\ c&0&a \\ b&a&0 \end{array}} \right|\]

87. If $${a_1},{a_2},{a_3},......,{a_n},......$$      are in G.P., then the value of the determinant \[\left| \begin{array}{l} \,\,\log {a_n}\,\,\,\,\,\,\,\,\log {a_{n + 1}}\,\,\,\,\,\,\,\,\,\,\log {a_{n + 2}}\\ \log {a_{n + 3}}\,\,\,\,\,\,\,\log {a_{n + 4}}\,\,\,\,\,\,\,\,\,\log {a_{n + 5}}\\ \log {a_{n + 6}}\,\,\,\,\,\,\,\log {a_{n + 7}}\,\,\,\,\,\,\,\,\,\log {a_{n + 8}} \end{array} \right|,\]       is

A $$- 2$$
B 1
C 2
D 0
Answer :   0

88. If \[A = \left[ {\begin{array}{*{20}{c}} \alpha &0\\ 1&1 \end{array}} \right]\]   and \[B = \left[ {\begin{array}{*{20}{c}} 9&a\\ b&c \end{array}} \right]\]   and $$A^2 = B,$$  then the value of $$a + b + c$$   is

A $$1$$ or $$- 1$$
B $$5$$ or $$- 1$$
C $$5$$ or $$1$$
D no real values
Answer :   $$5$$ or $$- 1$$

89. Let \[A = \left[ {\begin{array}{*{20}{c}} {x + y}&y\\ {2x}&{x - y} \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 2\\ { - 1} \end{array}} \right]\]      and \[C = \left[ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right].\]  If $$AB =C,$$   then what is $$A^2$$ equal to ?

A \[\left[ {\begin{array}{*{20}{c}} 6&{ - 10}\\ 4&{26} \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} { - 10}&{5}\\ 4&{24} \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} { - 5}&{ - 6}\\ { - 4}&{ - 20} \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} {- 5}&{ - 7}\\ {- 5}&{20} \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} 6&{ - 10}\\ 4&{26} \end{array}} \right]\]

90. If $$A$$ and $$B$$ are square matrices of size $$n \times n$$  such that $${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right),$$      then which of the following will be always true?

A $$A = B$$
B $$AB = BA$$
C either of $$A$$ or $$B$$ is a zero matrix
D either of $$A$$ or $$B$$ is identity matrix
Answer :   $$AB = BA$$