52.
If $$f:R \to S,$$ defined by $$f\left( x \right) = \sin - \sqrt 3 \cos x + 1,$$ is onto, then the interval of $$S$$ is
A
[-1, 3]
B
[-1, 1]
C
[0, 1]
D
[0, 3]
Answer :
[-1, 3]
$$\eqalign{
& f\left( x \right){\text{ is onto}}\,\,\therefore S = {\text{range}}\,{\text{of }}f\left( x \right) \cr
& {\text{Now }}f\left( x \right) = \sin x - \sqrt 3 \cos x + 1 = 2\sin \left( {x - \frac{\pi }{3}} \right) + 1 \cr
& \because - 1 \leqslant \sin \left( {x - \frac{\pi }{3}} \right) \leqslant 1 \cr
& - 1 \leqslant 2\sin \left( {x - \frac{\pi }{3}} \right) + 1 \leqslant 3 \cr
& \therefore f\left( x \right) \in \left[ { - 1,3} \right] = S \cr} $$
53.
If $$f$$ and $$g$$ are two functions defined as $$f\left( x \right) = x + 2,\,x \leqslant 0;\,g\left( x \right) = 3,\,x \geqslant 0,$$ then the domain of $$f + g$$ is :
55.
Let $$f\left( x \right) = \frac{{\alpha {x^2}}}{{x + 1}},\,x \ne - 1.$$ The value of $$\alpha $$ for which $$f\left( a \right) = a,\,\left( {a \ne 0} \right)$$ is :
56.
If $$f:\left[ {1,\infty } \right) \to \left[ {2,\infty } \right)$$ is given by $$f\left( x \right) = x + \frac{1}{x}$$ then $${f^{ - 1}}\left( x \right)$$ equals
A
$$\frac{{\left( {x + \sqrt {{x^2} - 4} } \right)}}{2}$$
B
$$\frac{x}{{\left( {1 + {x^2}} \right)}}$$
C
$$\frac{{\left( {x - \sqrt {{x^2} - 4} } \right)}}{2}$$
58.
Let $$f$$ be a function satisfying $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$ for all $$x,\,y\, \in \,R.$$ If $$f\left( 1 \right) = k$$ then $$f\left( n \right),\,n\, \in \,N,$$ is equal to :
A
$${k^n}$$
B
$$nk$$
C
$${n^k}$$
D
none of these
Answer :
$$nk$$
$$\eqalign{
& {\text{Let }}f\left( x \right){\text{ = }}\lambda \left( x \right){\text{ where }}\lambda {\text{ is a constant}}{\text{.}} \cr
& {\text{Hence, }} \cr
& f\left( {x + y} \right) \cr
& = \lambda \left( {x + y} \right) \cr
& = \lambda \left( x \right) + \lambda \left( y \right) \cr
& = f\left( x \right) + f\left( y \right) \cr
& {\text{Now it has been given that }}f\left( 1 \right) = k \cr
& {\text{Therefore }}\lambda = k \cr
& {\text{Hence,}} \cr
& f\left( x \right) = k\left( x \right) \cr
& {\text{Therefore, }}f\left( n \right) = k\left( n \right) \cr} $$
59.
Let $$f:\left( { - \infty ,\,1} \right] \to \left( { - \infty ,\,1} \right]$$ such that $$f\left( x \right) = x\left( {2 - x} \right).$$ Then $${f^{ - 1}}\left( x \right)$$ is :