Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

61. The Domain for which the function $$f\left( x \right) = 2{x^2} - 1$$    and $$g\left( x \right) = 1 - 3x$$    is equal, i.e., $$f\left( x \right) = g\left( x \right),$$   is :

A $$\left\{ {0,\,2} \right\}$$
B $$\left\{ {\frac{1}{2},\, - 2} \right\}$$
C $$\left\{ { - \frac{1}{2},\,2} \right\}$$
D $$\left\{ {\frac{1}{2},\,2} \right\}$$
Answer :   $$\left\{ {\frac{1}{2},\, - 2} \right\}$$

62. If $$f\left( x \right) = \frac{1}{{1 - x}},\,x \ne 0,\,1,$$     then the graph of the function $$y = f\left\{ {f\left( {f\left( x \right)} \right)} \right\},\,x > 1,$$      is :

A a circle
B an ellipse
C a straight line
D a pair of straight lines
Answer :   a straight line

63. The domain of the function $$f\left( x \right) = {\log _e}\left( {x - \left[ x \right]} \right),$$     where $$\left[ \cdot \right]$$ denotes the greatest integer function, is :

A $$R$$
B $$R-Z$$
C $$\left( {0,\, + \infty } \right)$$
D none of these
Answer :   $$R-Z$$

64. If $${\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) > 0,$$     then exhaustive range of values of $$x$$ is :

A $$\left( { - \infty ,\,2} \right) \cup \left( {3,\,\infty } \right)$$
B $$\left( {2,\,3} \right)$$
C $$\left( { - \infty ,\,1} \right) \cup \left( {1,\,2} \right) \cup \left( {2,\,\infty } \right)$$
D none of these
Answer :   $$\left( {2,\,3} \right)$$

65. If the function $$f:\left[ {1,\, + \infty } \right) \to \left[ {1,\, + \infty } \right)$$     is defined by $$f\left( x \right) = {2^{x\left( {x - 1} \right)}}$$    then $${f^{ - 1}}\left( x \right)$$  is :

A $${\left( {\frac{1}{2}} \right)^{x\left( {x - 1} \right)}}$$
B $$\frac{1}{2}\left( {1 + \sqrt {1 + 4\,{{\log }_2}x} } \right)$$
C $$\frac{1}{2}\left( {1 - \sqrt {1 + 4\,{{\log }_2}x} } \right)$$
D not defined
Answer :   $$\frac{1}{2}\left( {1 + \sqrt {1 + 4\,{{\log }_2}x} } \right)$$

66. Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A Injective but not surjective
B Surjective but not injective
C Bijective
D None of these.
Answer :   None of these.

67. The function $$f\left( x \right) = \left| {px - q} \right| + r\left| x \right|,x \in \left( { - \infty ,\infty } \right)$$       where $$p > 0,\,q > 0,\,r > 0$$     assumes its minimum value only on one point if

A $$p \ne q$$
B $$r \ne q$$
C $$r \ne p$$
D $$p = q = r$$
Answer :   $$r \ne p$$

68. Which of the following functions is periodic?

A $$f\left( x \right) = x - \left[ x \right]$$    where $$\left[ x \right]$$ denotes the largest integer less than or equal to the real number $$x$$
B $$f\left( x \right) = \sin \frac{1}{x}\,{\text{for}}\,x \ne 0,f\left( 0 \right) = 0$$
C $$f\left( x \right) = x\cos x$$
D none of these
Answer :   $$f\left( x \right) = x - \left[ x \right]$$    where $$\left[ x \right]$$ denotes the largest integer less than or equal to the real number $$x$$

69. Let $$g\left( x \right) = 1 + x - \left[ x \right]$$     and \[f\left( x \right)\left\{ {\begin{array}{*{20}{c}} { - 1,}\\ {0,}\\ {1,} \end{array}} \right.\,\begin{array}{*{20}{c}} {x < 0}\\ {x = 0}\\ {x > 0} \end{array}.\]     Then for all $$x,f\left( {g\left( x \right)} \right)$$   is equal to

A $$x$$
B 1
C $$f\left( x \right)$$
D $$g\left( x \right)$$
Answer :   1

70. Let $$\sum\limits_{k = 1}^{10} f \left( {a + k} \right) = 16\left( {{2^{10}} - 1} \right),$$      where the function $$f$$ satisfies $$f\left( {x + y} \right) = f\left( x \right)f\left( y \right)$$     for all natural numbers $$x,y$$  and $$f\left( a \right) = 2.$$   Then the natural number $$'a'$$ is:

A 2
B 16
C 4
D 3
Answer :   3