Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

21. The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$        is

A zero
B one
C two
D infinite
Answer :   two

22. The range of the function $$f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right);\,$$       (where [.] denotes the greatest integer function) is

A $$R$$
B $$\left[ {1,2} \right)$$
C $$\left\{ {\log \frac{\pi }{2}} \right\}$$
D $$\left\{ { - \sin 1} \right\}$$
Answer :   $$\left\{ {\log \frac{\pi }{2}} \right\}$$

23. $${\cos ^{ - 1}}\left\{ {\frac{1}{2}{x^2} + \sqrt {1 - {x^2}} \cdot \sqrt {1 - \frac{{{x^2}}}{4}} } \right\} = {\cos ^{ - 1}}\frac{x}{2} - {\cos ^{ - 1}}x$$           holds for

A $$\left| x \right| \leqslant 1$$
B $$x \in R$$
C $$0 \leqslant x \leqslant 1$$
D $$ - 1 \leqslant x \leqslant 0$$
Answer :   $$0 \leqslant x \leqslant 1$$

24. If $$\alpha ,\beta $$  are roots of the equation $$6{x^2} + 11x + 3 = 0$$    then

A both $${\cos ^{ - 1}}\alpha $$  and $${\cos ^{ - 1}}\beta $$  are real
B both $${\operatorname{cosec} ^{ - 1}}\alpha $$   and $${\operatorname{cosec} ^{ - 1}}\beta $$   are real
C both $${\cot ^{ - 1}}\alpha $$  and $${\cot ^{ - 1}}\beta $$  are real
D None of these
Answer :   both $${\cot ^{ - 1}}\alpha $$  and $${\cot ^{ - 1}}\beta $$  are real

25. If $${\cos ^{ - 1}}\lambda + {\cos ^{ - 1}}\mu + {\cos ^{ - 1}} \nu = 3\pi $$       then $$\lambda \mu + \mu \nu + \nu \lambda $$   is equal to

A $$- 3$$
B $$0$$
C $$3$$
D $$- 1$$
Answer :   $$3$$

26. Two angles of a triangle are $${\cot ^{ - 1}}2$$  and $${\cot ^{ - 1}}3.$$  Then the third angle is

A $$\frac{\pi }{4}$$
B $$\frac{3\pi }{4}$$
C $$\frac{\pi }{6}$$
D $$\frac{\pi }{3}$$
Answer :   $$\frac{3\pi }{4}$$

27. The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A zero
B one
C two
D infinite
Answer :   two

28. If $$k \leqslant {\sin ^{ - 1}}x + {\cos ^{ - 1}}x + {\tan ^{ - 1}}x \leqslant K,$$        then

A $$k = - \pi ,K = \pi $$
B $$k = 0,K = \frac{{\pi }}{2}$$
C $$k = \frac{\pi }{4},K = \frac{{3\pi }}{4}$$
D $$k = 0 ,K = \pi $$
Answer :   $$k = \frac{\pi }{4},K = \frac{{3\pi }}{4}$$

29. $$ - \frac{{2\pi }}{5}$$  is the principal value of

A $${\cos ^{ - 1}}\left( {\cos \frac{{7\pi }}{5}} \right)$$
B $${\sin ^{ - 1}}\left( {\sin \frac{{7\pi }}{5}} \right)$$
C $${\sec ^{ - 1}}\left( {\sec \frac{{7\pi }}{5}} \right)$$
D None of these
Answer :   $${\sin ^{ - 1}}\left( {\sin \frac{{7\pi }}{5}} \right)$$

30. If $${\tan ^{ - 1}}\left( {2x} \right) + {\tan ^{ - 1}}\left( {3x} \right) = \frac{\pi }{4}$$      then $$x$$ is equal to

A $$ - 1$$
B $$ - 2$$
C $$1$$
D $$2$$
Answer :   $$ - 1$$