$$\eqalign{
& {\text{arg}}\left( z \right) < 0\,\left( {{\text{given}}} \right) \cr
& \Rightarrow \,\,{\text{arg}}\left( z \right) = - \theta \cr
& {\text{Now}} \cr} $$

$$\eqalign{
& z = r\cos \left( { - \theta } \right) + i\sin \left( { - \theta } \right) \cr
& \,\,\,\, = r\left[ {\cos \left( \theta \right) - i\sin \left( \theta \right)} \right] \cr
& {\text{Again }} - z = - r\left[ {\cos \left( \theta \right) - i\sin \left( \theta \right)} \right] \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = r\left[ {\cos \left( {\pi - \theta } \right) + i\sin \left( {\pi - \theta } \right)} \right] \cr
& \therefore \,\,{\text{arg}}\left( { - z} \right) = \pi - \theta ; \cr
& {\text{Thus arg}}\left( { - z} \right) - {\text{arg}}\left( z \right) = \pi - \theta - \left( { - \theta } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \pi - \theta + \theta = \pi \cr} $$