Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

101. The number of complex numbers $$z$$ such that $$\left| {z - 1} \right| = \left| {z + 1} \right| = \left| {z - i} \right|$$     equals

A $$1$$
B $$2$$
C $$\infty $$
D $$0$$
Answer :   $$1$$

102. If $${\text{arg}}\left( z \right) < 0,{\text{then arg}}\left( { - z} \right) - {\text{arg}}\left( z \right) = $$

A $$\pi $$
B $$ - \pi $$
C $$ - \frac{\pi }{2}$$
D $$\frac{\pi }{2}$$
Answer :   $$\pi $$

103. If $$z$$ and $$\omega $$ are two non-zero complex numbers such that $$\left| {z\omega } \right| = 1{\text{ and Arg}}\left( z \right) - {\text{Arg}}\left( \omega \right) = \frac{\pi }{2},{\text{then }}\overline z \omega $$          is equal to

A $$ - i$$
B $$1$$
C $$ - 1$$
D $$i$$
Answer :   $$ - 1$$

104. All the points in the set $$S = \left\{ {\frac{{\alpha + i}}{{\alpha - i}}:\alpha \in R} \right\}\left( {i = \sqrt { - 1} } \right)$$       lie on a :

A straight line whose slope is 1.
B circle whose radius is 1.
C circle whose radius is $$\sqrt 2 .$$
D straight line whose slope is $$- 1.$$
Answer :   circle whose radius is 1.

105. If $$\left| {z - i} \right| \leqslant 2$$   and $${z_0} = 5 + 3i$$   then the maximum value of $$\left| {iz + {z_0}} \right|$$  is

A $$2 + \sqrt {31} $$
B $$7$$
C $$ \sqrt {31} - 2 $$
D None of these
Answer :   $$7$$

106. If $$z,\omega z$$  and $$\bar \omega z$$  are the vertices of a triangle, then the area of the triangle will be (where $$\omega$$ is cube root of unity) :

A $$\frac{{3{{\left| z \right|}^2}}}{2}$$
B $$\frac{{3 \sqrt 3 {{\left| z \right|}^2}}}{2}$$
C $$\frac{{ \sqrt 3 {{\left| z \right|}^2}}}{2}$$
D None of these
Answer :   $$\frac{{3 \sqrt 3 {{\left| z \right|}^2}}}{2}$$

107. A particle $$P$$ starts from the point $${z_0} = 1 + 2i,$$   where $$i = \sqrt { - 1} .$$  It moves horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point $${z_1}.$$ From $${z_1}$$ the particle moves $$\sqrt 2 $$ units in the direction of the vector $$\hat i + \hat j$$  and then it moves through an angle $$\frac{\pi }{2}$$ in anticlockwise direction on a circle with center at origin, to reach a point $${z_2}.$$ The point $${z_2}$$ is given by

A $$6 + 7i$$
B $$- 7 + 6i$$
C $$7 + 6i$$
D $$- 6 + 7i$$
Answer :   $$- 6 + 7i$$

108. Let $${z_1} = a + ib,{z_2} = p + iq$$     be two unimodular complex numbers such that $$\operatorname{Im} \left( {{z_1}{{\overline z }_2}} \right) = 1.$$   If $${\omega _1} = a + ip,{\omega _2} = b + iq$$     then

A $$\operatorname{Re} \left( {{\omega _1}{\omega _2}} \right) = 1$$
B $$\operatorname{Im} \left( {{\omega _1}{\omega _2}} \right) = 1$$
C $$\operatorname{Re} \left( {{\omega _1}{\omega _2}} \right) = 0$$
D $$\operatorname{Im} \left( {{\omega _1}{{\overline \omega }_2}} \right) = 1$$
Answer :   $$\operatorname{Im} \left( {{\omega _1}{{\overline \omega }_2}} \right) = 1$$

109. For positive integers $${n_1},{n_2}$$  the value of the expression $${\left( {1 + i} \right)^{{n_1}}} + {\left( {1 + {i^3}} \right)^{{n_1}}} + {\left( {1 + {i^5}} \right)^{{n_2}}} + {\left( {1 + {i^7}} \right)^{{n_2}}},$$          where $$i = \sqrt { - 1} $$   is a real number if and only if

A $${n_1} = {n_2} + 1$$
B $${n_1} = {n_2} - 1$$
C $${n_1} = {n_2}$$
D $${n_1} > 0,{n_2} > 0$$
Answer :   $${n_1} > 0,{n_2} > 0$$

110. If center of a regular hexagon is at origin and one of the vertex on argand diagram is $$1 + 2i,$$  then its perimeter is

A $$2\sqrt 5 $$
B $$6\sqrt 2 $$
C $$4\sqrt 5 $$
D $$6\sqrt 5 $$
Answer :   $$6\sqrt 5 $$