Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

121. Let $$z = \frac{{\cos \theta + i\sin \theta }}{{\cos \theta - i\sin \theta }},\frac{\pi }{4} < \theta < \frac{\pi }{2}.$$       Then $$\arg z$$  is

A $$2\theta $$
B $$2\theta - \pi $$
C $$\pi + 2\theta$$
D None of these
Answer :   $$2\theta $$

122. If $$\omega $$ is a non-real cube root of unity then $$\frac{{1 + 2\omega + 3{\omega ^2}}}{{2 + 3\omega + {\omega ^2}}} + \frac{{2 + 3\omega + {\omega ^2}}}{{3 + \omega + 2{\omega ^2}}}$$      is equal to

A $$- 1$$
B $$2\omega $$
C $$0$$
D $$ - 2\omega $$
Answer :   $$2\omega $$

123. What is the argument of $$\left( {1 - \sin \theta } \right) + i\,\cos \theta \, ?$$

A $$\frac{\pi }{2} - \frac{\theta }{2}$$
B $$\frac{\pi }{2} + \frac{\theta }{2}$$
C $$\frac{\pi }{4} - \frac{\theta }{2}$$
D $$\frac{\pi }{4} + \frac{\theta }{2}$$
Answer :   $$\frac{\pi }{4} + \frac{\theta }{2}$$

124. For a complex number $$z,$$ the minimum value of $$\left| z \right| + \left| {z - 2} \right|$$   is

A 1
B 2
C 3
D None of these
Answer :   2

125. For the complex numbers $$z_1$$ and $$z_2$$ if $${\left| {1 - {{\bar z}_1}{z_2}} \right|^2} - {\left| {{z_1} - {z_2}} \right|^2} = k\left( {1 - {{\left| {{z_1}} \right|}^2}} \right)\left( {1 - {{\left| {{z_2}} \right|}^2}} \right)$$         then $$'k'$$ equals to

A $$1$$
B $$- 1$$
C $$2$$
D $$- 2$$
Answer :   $$1$$

126. If $$\omega \left( { \ne 1} \right)$$   be a cube root of unity and $${\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n},$$     then the least positive value of $$n$$ is

A 2
B 3
C 5
D 6
Answer :   3

127. The value of $${\left( {1 + i} \right)^3} + {\left( {1 - i} \right)^6}$$    is

A $$i$$
B $$2 ( - 1 + 5i)$$
C $$1 - 5i$$
D None of these
Answer :   $$2 ( - 1 + 5i)$$

128. If $$z_1, z_2$$  are the roots of the quadratic equation $$az^2 + bz + c = 0$$    such that $$\operatorname{Im} \left( {{z_1},{z_2}} \right) \ne 0$$    then

A $$a, b, c$$  are all real
B at least one of $$a, b, c$$  is real
C at least one of $$a, b, c$$  is imaginary
D all of $$a, b, c$$  are imaginary
Answer :   at least one of $$a, b, c$$  is imaginary

129. The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A the $$x$$ - axis
B the straight line $$y = 5$$
C a circle passing through the origin
D none of these
Answer :   the $$x$$ - axis

130. Let $$z$$ and $$\omega $$ be two complex numbers such that $$\left| z \right| \leqslant 1,\left| \omega \right| \leqslant 1\,\,{\text{and }}\left| {z + i\omega } \right| = \left| {z - i\bar \omega } \right| = 2.$$         Then $$z$$ equals

A $$1$$ or $$i$$
B $$i$$ or $$ - i$$
C $$1$$ or $$ - i$$
D $$i$$ or $$ - 1$$
Answer :   $$1$$ or $$ - i$$