126.
If $$\omega \left( { \ne 1} \right)$$ be a cube root of unity and $${\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n},$$ then the least positive value of $$n$$ is
128.
If $$z_1, z_2$$ are the roots of the quadratic equation $$az^2 + bz + c = 0$$ such that $$\operatorname{Im} \left( {{z_1},{z_2}} \right) \ne 0$$ then
A
$$a, b, c$$ are all real
B
at least one of $$a, b, c$$ is real
C
at least one of $$a, b, c$$ is imaginary
D
all of $$a, b, c$$ are imaginary
Answer :
at least one of $$a, b, c$$ is imaginary
$${\text{Since}}\,\,a{z^2} + bz + c = 0\,\,\,.....\left( 1 \right)$$
and $$z_1 , z_2$$ (roots of (1)) are such that $$\operatorname{Im} \left( {{z_1},{z_2}} \right) \ne 0.$$
Now, $$z_1$$ and $$z_2$$ are not conjugates of each other
Complex roots of (1) are not conjugate of each other
Co-efficient $$a, b, c$$ can-not all be real at least one $$a, b, c$$ is imaginary.
129.
The complex numbers $$z = x+ iy$$ which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$ lie on
130.
Let $$z$$ and $$\omega $$ be two complex numbers such that $$\left| z \right| \leqslant 1,\left| \omega \right| \leqslant 1\,\,{\text{and }}\left| {z + i\omega } \right| = \left| {z - i\bar \omega } \right| = 2.$$ Then $$z$$ equals
A
$$1$$ or $$i$$
B
$$i$$ or $$ - i$$
C
$$1$$ or $$ - i$$
D
$$i$$ or $$ - 1$$
Answer :
$$1$$ or $$ - i$$
We have, $$2 = \left| {z + i\omega } \right| \leqslant \left| z \right| + \left| \omega \right|\,\,\,\,\,\,\,.....\left( {\text{i}} \right)$$
$$\therefore \,\left| z \right| + \left| \omega \right| \geqslant 2$$
But given that $$\left| z \right| \leqslant 1\,\,{\text{and}}\,\,\left| \omega \right| \leqslant 1\,\,\,\,\,\,\,.....\left( {{\text{ii}}} \right)$$
$$ \Rightarrow \,\left| z \right| + \left| \omega \right| \leqslant 2$$
From (i) and (ii) $$\left| z \right| = \left| \omega \right| = 1$$
$$\eqalign{
& {\text{Also}}\,\,\left| {z + i\omega } \right| = \left| {z - i\bar \omega } \right| \cr
& \Rightarrow \,{\left| {z + i\omega } \right|^2} = {\left| {z - i\bar \omega } \right|^2} \cr
& \Rightarrow \,\left( {z + i\omega } \right)\left( {\bar z - i\bar \omega } \right) = \left( {\bar z + i\omega } \right)\left( {z - i\bar \omega } \right) \cr
& \Rightarrow \,z\bar z + i\omega \bar z - iz\bar \omega + \omega \bar \omega = z\bar z - i\bar z\bar \omega + i\omega z + \omega \bar \omega \cr
& \Rightarrow \,\omega \bar z - \bar \omega z + \bar \omega \bar z - \omega z = 0 \cr
& \Rightarrow \,\left( {\omega + \bar \omega } \right)\left( {\bar z - z} \right) = 0 \cr
& \Rightarrow \,z = \bar z\,\,{\text{or}}\,\,\omega = - \bar \omega \cr
& \Rightarrow \,{I_m}\left( z \right) = 0 \cr
& \Rightarrow \,\operatorname{Re} \left( \omega \right) = 0 \cr
& {\text{Also}}\,\left| z \right| = 1,\left| \omega \right| = 1 \cr
& \Rightarrow \,z = 1\,\,{\text{or}}\,\, - 1\,\,{\text{and}}\,\,\omega = i\,\,{\text{or}}\,\, - i \cr} $$