Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

141. If $$\left| {{z^2} - 1} \right| = {\left| z \right|^2} + 1,$$    then $$z$$ lies on

A an ellipse
B the imaginary axis
C a circle
D the real axis
Answer :   the imaginary axis

142. Let $${z_1}\,{\text{and }}{z_2}$$   be two roots of the equation $${z^2} + az + b = 0,$$    $$z$$ being complex. Further , assume that the origin, $${z_1}\,{\text{and }}{z_2}$$   form an equilateral triangle. Then

A $${a^2} = 4b$$
B $${a^2} = b$$
C $${a^2} = 2b$$
D $${a^2} = 3b$$
Answer :   $${a^2} = 3b$$

143. If $${e^{i\theta }} = \cos \theta + i\sin \theta $$    then for the $$\vartriangle ABC,{e^{iA}} \cdot {e^{iB}} \cdot {e^{iC}}$$     is

A $$- i$$
B $$1$$
C $$- 1$$
D None of these
Answer :   $$- 1$$

144. Let $$z = {\log _2}\left( {1 + i} \right),$$    then $$\left( {z + \bar z} \right) + i\left( {z - \bar z} \right) = $$

A $$\frac{{\ln 4 + \pi }}{{\ln 4}}$$
B $$\frac{{\pi - \ln 4}}{{\ln 2}}$$
C $$\frac{{\ln 4 - \pi }}{{\ln 4}}$$
D $$\frac{{\pi + \ln 4}}{{\ln 2}}$$
Answer :   $$\frac{{\ln 4 - \pi }}{{\ln 4}}$$

145. The principle value of the $$\arg \left( z \right)$$  and $$\left| z \right|$$ of the complex number $$z = 1 + \cos \left( {\frac{{11\pi }}{9}} \right) + i\sin \left( {\frac{{11\pi }}{9}} \right)$$       are respectively.

A $$\frac{{11\pi }}{8},2\cos \left( {\frac{\pi }{{18}}} \right)$$
B $$ - \frac{{7\pi }}{18}, - 2\cos \left( {\frac{11\pi }{{18}}} \right)$$
C $$\frac{{2\pi }}{9},2\cos \left( {\frac{7\pi }{{18}}} \right)$$
D $$ - \frac{{\pi }}{9}, - 2\cos \left( {\frac{\pi }{{18}}} \right)$$
Answer :   $$ - \frac{{7\pi }}{18}, - 2\cos \left( {\frac{11\pi }{{18}}} \right)$$

146. If $$\alpha ,\beta ,\gamma $$  and $$a, b, c$$  are complex numbers such that $$\frac{\alpha }{a} + \frac{\beta }{b} + \frac{\gamma }{c} = 1 + i$$     and $$\frac{a}{\alpha } + \frac{b}{\beta } + \frac{c}{\gamma } = 0,$$    then the value of $$\frac{\alpha^2 }{a^2} + \frac{\beta^2 }{b^2} + \frac{\gamma^2 }{c^2}$$   is equal to

A $$0$$
B $$- 1$$
C $$2i$$
D $$- 2i$$
Answer :   $$2i$$

147. If $$\omega$$ is a complex cube root of unity and $$x\, = {\omega ^2} - \omega - 2,$$    then what is the value of $$x^2 + 4x + 7\, ?$$

A $$- 2$$
B $$- 1$$
C $$0$$
D $$1$$
Answer :   $$0$$

148. Let $$z$$ and $$\omega $$ be two non zero complex numbers such that $$\left| z \right| = \left| \omega \right|\,\,{\text{and Arg }}z + {\text{Arg }}\omega = \pi ,$$       then $$z$$ equals

A $$\omega $$
B $$ - \omega $$
C $$ \overline \omega $$
D $$ - \overline \omega $$
Answer :   $$ - \overline \omega $$

149. Suppose $${z_1},{z_2},{z_3}$$  are the vertices of an equilateral triangle inscribed in the circle $$\left| z \right| = 2.$$  If $${z_1} = 1 + \sqrt {3}i $$   and $${z_1},{z_2},{z_3}$$  are in the clockwise sense then

A $${z_2} = 1 - \sqrt {3}i ,{z_3} = - 2$$
B $${z_2} = 2,{z_3} = 1 - \sqrt {3}i $$
C $${z_2} = - 1 + \sqrt {3}i ,{z_3} = - 2$$
D None of these
Answer :   $${z_2} = 1 - \sqrt {3}i ,{z_3} = - 2$$

150. If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C $$- 1, - 1, - 1$$
D none of these
Answer :   $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$