Complex Number MCQ Questions & Answers in Algebra | Maths
Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
141.
If $$\left| {{z^2} - 1} \right| = {\left| z \right|^2} + 1,$$ then $$z$$ lies on
A
an ellipse
B
the imaginary axis
C
a circle
D
the real axis
Answer :
the imaginary axis
$$\eqalign{
& \left| {{z^2} - 1} \right| = {\left| z \right|^2} + 1 \cr
& \Rightarrow \,\,{\left| {{z^2} - 1} \right|^2} = {\left( {z\overline z + 1} \right)^2} \cr
& \Rightarrow \,\,\left( {{z^2} - 1} \right)\left( {{{\overline z }^2} - 1} \right) = {\left( {z\overline z + 1} \right)^2} \cr
& \Rightarrow \,\,{z^2}{\overline z ^2} - {z^2} - {\overline z ^2} + 1 = \,{z^2}{\overline z ^2} + 2z\overline z + 1 \cr
& \Rightarrow \,\,{z^2} + 2z\overline z + {\overline z ^2} = 0 \cr
& \Rightarrow \,\,{\left( {z + \overline z } \right)^2} = 0 \cr
& \Rightarrow \,\,z = - \overline z \cr
& \Rightarrow \,\,z\,\,{\text{is purely imaginary}} \cr} $$
142.
Let $${z_1}\,{\text{and }}{z_2}$$ be two roots of the equation $${z^2} + az + b = 0,$$ $$z$$ being complex. Further , assume that the origin, $${z_1}\,{\text{and }}{z_2}$$ form an equilateral triangle. Then
145.
The principle value of the $$\arg \left( z \right)$$ and $$\left| z \right|$$ of the complex number $$z = 1 + \cos \left( {\frac{{11\pi }}{9}} \right) + i\sin \left( {\frac{{11\pi }}{9}} \right)$$ are respectively.
A
$$\frac{{11\pi }}{8},2\cos \left( {\frac{\pi }{{18}}} \right)$$
$$z = 1 + \cos \frac{{11\pi }}{9} + i\sin \frac{{11\pi }}{9}$$
$$\operatorname{Re} \left( z \right) > 0$$ and $$\operatorname{Im} \left( z \right) < 0,$$ so the number lies in the fourth quadrant. Also
$$\eqalign{
& z = 2\cos \frac{{11\pi }}{{18}}\left\{ {\cos \frac{{11\pi }}{{18}} + i\sin \frac{{11\pi }}{{18}}} \right\} \cr
& = 2\cos \frac{{11\pi }}{{18}}\left\{ {\cos \left( { - \frac{{7\pi }}{{18}}} \right) + i\sin \left( { - \frac{{7\pi }}{{18}}} \right)} \right\} \cr
& \therefore \arg \left( z \right) = - \frac{{7\pi }}{{18}} \cr
& \left| z \right| = \left| {2\cos \frac{{11\pi }}{{18}}} \right| = - 2\cos \frac{{11\pi }}{{18}} \cr} $$
146.
If $$\alpha ,\beta ,\gamma $$ and $$a, b, c$$ are complex numbers such that $$\frac{\alpha }{a} + \frac{\beta }{b} + \frac{\gamma }{c} = 1 + i$$ and $$\frac{a}{\alpha } + \frac{b}{\beta } + \frac{c}{\gamma } = 0,$$ then the value of $$\frac{\alpha^2 }{a^2} + \frac{\beta^2 }{b^2} + \frac{\gamma^2 }{c^2}$$ is equal to
148.
Let $$z$$ and $$\omega $$ be two non zero complex numbers such that $$\left| z \right| = \left| \omega \right|\,\,{\text{and Arg }}z + {\text{Arg }}\omega = \pi ,$$ then $$z$$ equals
149.
Suppose $${z_1},{z_2},{z_3}$$ are the vertices of an equilateral triangle inscribed in the circle $$\left| z \right| = 2.$$ If $${z_1} = 1 + \sqrt {3}i $$ and $${z_1},{z_2},{z_3}$$ are in the clockwise sense then