Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

161. If $$z$$ and $$\omega $$ are two non-zero complex numbers such that $$\left| {z\omega } \right| = 1{\text{ and Arg}}\left( z \right) - {\text{Arg}}\left( \omega \right) = \frac{\pi }{2},$$       then $$\overline z \omega $$  is equal to

A $$- i$$
B $$1$$
C $$- 1$$
D $$i$$
Answer :   $$- 1$$

162. If $$2x = 3 + 5i,$$   then what is the value of $$2{x^3} + 2{x^2} – 7x + 72 \,?$$

A $$4$$
B $$ - 4$$
C $$8$$
D $$ - 8$$
Answer :   $$4$$

163. What is $$\frac{{{{\left( {1 + i} \right)}^{4n + 5}}}}{{{{\left( {1 - i} \right)}^{4n + 3}}}}$$   equal to, where $$n$$ is a natural number and $$i = \sqrt { - 1} ?$$

A $$2$$
B $$2i$$
C $$- 2$$
D $$i$$
Answer :   $$2$$

164. $${x^{3m}} + {x^{3n - 1}} + {x^{3r - 2}},$$     where $$m,n,r \in N,$$   is divisible by

A $${x^2} - x + 1$$
B $${x^2} + x + 1$$
C $${x^2} + x - 1$$
D $${x^2} - x - 1$$
Answer :   $${x^2} + x + 1$$

165. If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A $${\text{Re}}\left( z \right) = 0$$
B $${\text{Im}}\left( z \right) = 0$$
C $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$
Answer :   $${\text{Im}}\left( z \right) = 0$$

166. Suppose $${z_1},{z_2},{z_3}$$  are the vertices of an equilateral triangle circumscribing the circle $$\left| z \right| = 1.$$  If $${z_1} = 1 + \sqrt {3}i $$   and $${z_1},{z_2},{z_3}$$  are in the anticlockwise sense then $${z_2}$$ is

A $$1 - \sqrt {3}i $$
B $$2$$
C $$\frac{1}{2}\left( {1 - \sqrt {3}i } \right)$$
D None of these
Answer :   None of these

167. The smallest positive integral value of $$n$$ for which $${\left( {\frac{{1 - i}}{{1 + i}}} \right)^n}$$   is purely imaginary with positive imaginary part, is

A 1
B 3
C 5
D None of these
Answer :   3

168. Let $$z$$ and $$w$$ be complex numbers such that $$\overline z + i\overline w = 0\,\,{\text{and arg }}zw = \pi .$$     Then arg $$z$$ equals

A $$\frac{{5\pi }}{4}$$
B $$\frac{{\pi }}{2}$$
C $$\frac{{3\pi }}{4}$$
D $$\frac{{\pi }}{4}$$
Answer :   $$\frac{{3\pi }}{4}$$