Complex Number MCQ Questions & Answers in Algebra | Maths
Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
161.
If $$z$$ and $$\omega $$ are two non-zero complex numbers such that $$\left| {z\omega } \right| = 1{\text{ and Arg}}\left( z \right) - {\text{Arg}}\left( \omega \right) = \frac{\pi }{2},$$ then $$\overline z \omega $$ is equal to
A
$$- i$$
B
$$1$$
C
$$- 1$$
D
$$i$$
Answer :
$$- 1$$
Consider $$\left| {\overline z \omega } \right| = \left| {\overline z } \right|\left| \omega \right| = \left| z \right|\left| \omega \right| = \left| {z\omega } \right| = 1$$
Consider $${\text{Arg}}\left( {\overline z \omega } \right) = \arg \left( {\overline z } \right) + \arg \left( \omega \right) = - \arg \left( z \right) + \arg \omega = - \frac{\pi }{2}$$
$$\therefore \overline z \omega = - 1$$
162.
If $$2x = 3 + 5i,$$ then what is the value of $$2{x^3} + 2{x^2} – 7x + 72 \,?$$
163.
What is $$\frac{{{{\left( {1 + i} \right)}^{4n + 5}}}}{{{{\left( {1 - i} \right)}^{4n + 3}}}}$$ equal to, where $$n$$ is a natural number and $$i = \sqrt { - 1} ?$$
166.
Suppose $${z_1},{z_2},{z_3}$$ are the vertices of an equilateral triangle circumscribing the circle $$\left| z \right| = 1.$$ If $${z_1} = 1 + \sqrt {3}i $$ and $${z_1},{z_2},{z_3}$$ are in the anticlockwise sense then $${z_2}$$ is
A
$$1 - \sqrt {3}i $$
B
$$2$$
C
$$\frac{1}{2}\left( {1 - \sqrt {3}i } \right)$$
D
None of these
Answer :
None of these
$$\left| z \right| = \frac{1}{2},$$ it represents circle with circle center $$\left( {0.0} \right)r = \frac{1}{2}$$
by drawing figure we get, since $${z_2}$$ is anticlockwise $${z_1} = - \frac{1}{2}$$
$${z_1} = \frac{1}{2} + \sqrt 3 \frac{i}{2}$$
and Argument $$\left( z \right) = \sqrt 3 $$
$$\eqalign{
& \tan \,\theta = \sqrt 3 \,\theta = {60^ \circ }\left| z \right| = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}} = 1 \cr
& {\text{Similarly }}\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| \cr} $$
So, $$\left| z \right| = 1$$ and $$z$$ lies on the real axis of the positive direction.
∴ option D is correct.
167.
The smallest positive integral value of $$n$$ for which $${\left( {\frac{{1 - i}}{{1 + i}}} \right)^n}$$ is purely imaginary with positive imaginary part, is