Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

111. The number of $$3 \times 3$$  non-singular matrices, with four entries as 1 and all other entries as 0, is

A 5
B 6
C at least 7
D less that 4
Answer :   at least 7

112. The value of the determinant \[\left| {\begin{array}{*{20}{c}} {bc}&{ca}&{ab} \\ p&q&r \\ 1&1&1 \end{array}} \right|,\]    where $$a, b, c$$  are the $${p^{th}},{q^{th}}$$  and $${r^{th}}$$ terms of a H.P., is

A $$ap + bq + cr$$
B $$\left( {a + b + c} \right)\left( {p + q + r} \right)$$
C $$0$$
D None of these
Answer :   $$0$$

113. If $$A$$ is a square matrix such that $$\left( {A - 2I} \right)\left( {A + I} \right) = 0$$     then $$A^{–1} =$$

A $$\frac{{A - I}}{2}$$
B $$\frac{{A + I}}{2}$$
C $$2\left( {A - I} \right)$$
D $$2A + I$$
Answer :   $$\frac{{A - I}}{2}$$

114. If \[\left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\ 1&\lambda \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} 1&5&\mu \\ 0&2&{ - 3} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&4&1 \\ 1&{ - 1}&{13} \end{array}} \right]\]        then

A $$\lambda = 3,\mu = 4$$
B $$\lambda = 4,\mu = - 3$$
C no real values of $$\lambda ,\mu $$  are possible
D None of these
Answer :   None of these

115. If \[A = \left[ {\begin{array}{*{20}{c}} 1&\omega &{{\omega ^2}} \\ \omega &{{\omega ^2}}&1 \\ {{\omega ^2}}&1&\omega \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} \omega &{{\omega ^2}}&1 \\ {{\omega ^2}}&1&\omega \\ \omega &{{\omega ^2}}&1 \end{array}} \right]\]        and \[C = \left[ {\begin{array}{*{20}{c}} 1 \\ \omega \\ {{\omega ^2}} \end{array}} \right]\]  where \[\omega \] is the complex cube root of $$1$$ then $$(A + B)C$$   is equal to

A \[\left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 0 \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} 1 \\ 1 \\ 1 \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 0 \end{array}} \right]\]

116. If $$A$$ be a matrix such that \[A \times \left[ {\begin{array}{*{20}{c}} 1&{ - 2} \\ 1&4 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 6&0 \\ 0&6 \end{array}} \right]\]     then $$A$$ is

A \[\left[ {\begin{array}{*{20}{c}} 2&4 \\ 1&{ - 1} \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} { - 1}&1 \\ 4&2 \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} 4&2 \\ { - 1}&1 \end{array}} \right]\]
D None of these
Answer :   \[\left[ {\begin{array}{*{20}{c}} 4&2 \\ { - 1}&1 \end{array}} \right]\]

117. If \[A = \left[ {\begin{array}{*{20}{c}} {\sin \alpha }&{ - \cos \alpha }&0 \\ {\cos \alpha }&{\sin \alpha }&0 \\ 0&0&1 \end{array}} \right]\]     then $${A^{ - 1}}$$ is equal to

A $${A^T}$$
B $$A$$
C $${\text{adj}}\,A$$
D None of these
Answer :   $${\text{adj}}\,A$$

118. If $$f\left( x \right),g\left( x \right)$$   and $$h\left( x \right)$$  are three polynomials of degree 2 and \[\Delta \left( x \right) = \left| {\begin{array}{*{20}{c}} {f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\ {f'\left( x \right)}&{g'\left( x \right)}&{h'\left( x \right)}\\ {f''\left( x \right)}&{g''\left( x \right)}&{h''\left( x \right)} \end{array}} \right|,\]       then $$\Delta \left( x \right)$$  is a polynomial of degree

A 2
B 3
C at most 2
D at most 3
Answer :   at most 2

119. The value of \[\left| {\begin{array}{*{20}{c}} 1&0&0&0&0 \\ 2&2&0&0&0 \\ 4&4&3&0&0 \\ 5&5&5&4&0 \\ 6&6&6&6&5 \end{array}} \right|\]    is

A $$6 !$$
B $$5 !$$
C $$1 \cdot {2^2} \cdot 3 \cdot {4^3} \cdot {5^4} \cdot {6^4}$$
D None of these
Answer :   $$5 !$$

120. If \[P = \left[ \begin{array}{l} 1\,\,\,\,\,\,\,\alpha \,\,\,\,\,\,\,3\\ 1\,\,\,\,\,\,\,3\,\,\,\,\,\,\,\,3\\ 2\,\,\,\,\,\,4\,\,\,\,\,\,\,4 \end{array} \right]\]   is the adjoint of a $$3 \times 3$$  matrix $$A$$ and $$\left| A \right| = 4,$$  then $$\alpha $$ is equal to:

A 4
B 11
C 5
D 0
Answer :   11