Matrices and Determinants MCQ Questions & Answers in Algebra | Maths
Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
111.
The number of $$3 \times 3$$ non-singular matrices, with four entries as 1 and all other entries as 0, is
A
5
B
6
C
at least 7
D
less that 4
Answer :
at least 7
\[\left[ \begin{array}{l}
\,1\,\,\,\,\,\,\,...\,\,\,\,\,\,...\\
...\,\,\,\,\,\,\,1\,\,\,\,\,\,\,...\\
...\,\,\,\,\,\,...\,\,\,\,\,\,\,1
\end{array} \right]\] are 6 non-singular matrices because 6 blanks will be filled by 5 zeros and 1 one.
Similarly, \[\left[ \begin{array}{l}
...\,\,\,\,\,\,\,...\,\,\,\,\,\,\,1\\
...\,\,\,\,\,\,\,1\,\,\,\,\,\,\,...\\
\,1\,\,\,\,\,\,...\,\,\,\,\,\,...
\end{array} \right]\] are 6 non-singular matrices.
So, required cases are more than 7, non-singular $$3 \times 3$$ matrices.
112.
The value of the determinant \[\left| {\begin{array}{*{20}{c}}
{bc}&{ca}&{ab} \\
p&q&r \\
1&1&1
\end{array}} \right|,\] where $$a, b, c$$ are the $${p^{th}},{q^{th}}$$ and $${r^{th}}$$ terms of a H.P., is
A
$$ap + bq + cr$$
B
$$\left( {a + b + c} \right)\left( {p + q + r} \right)$$
116.
If $$A$$ be a matrix such that \[A \times \left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
1&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&0 \\
0&6
\end{array}} \right]\] then $$A$$ is
A
\[\left[ {\begin{array}{*{20}{c}}
2&4 \\
1&{ - 1}
\end{array}} \right]\]
B
\[\left[ {\begin{array}{*{20}{c}}
{ - 1}&1 \\
4&2
\end{array}} \right]\]
C
\[\left[ {\begin{array}{*{20}{c}}
4&2 \\
{ - 1}&1
\end{array}} \right]\]
117.
If \[A = \left[ {\begin{array}{*{20}{c}}
{\sin \alpha }&{ - \cos \alpha }&0 \\
{\cos \alpha }&{\sin \alpha }&0 \\
0&0&1
\end{array}} \right]\] then $${A^{ - 1}}$$ is equal to
A
$${A^T}$$
B
$$A$$
C
$${\text{adj}}\,A$$
D
None of these
Answer :
$${\text{adj}}\,A$$
\[{\text{Here,}}\,\left| A \right| = \left[ {\begin{array}{*{20}{c}}
{\sin \alpha }&{ - \cos \alpha }&0 \\
{\cos \alpha }&{\sin \alpha }&0 \\
0&0&1
\end{array}} \right] = 1\]
∴ by definition, $${A^{ - 1}} = \frac{1}{{\left| A \right|}}{\text{adj}}\,A.$$ We get $${A^{ - 1}} = {\text{adj}}\,A.$$
118.
If $$f\left( x \right),g\left( x \right)$$ and $$h\left( x \right)$$ are three polynomials of degree 2 and \[\Delta \left( x \right) = \left| {\begin{array}{*{20}{c}}
{f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\
{f'\left( x \right)}&{g'\left( x \right)}&{h'\left( x \right)}\\
{f''\left( x \right)}&{g''\left( x \right)}&{h''\left( x \right)}
\end{array}} \right|,\] then $$\Delta \left( x \right)$$ is a polynomial of degree
A
2
B
3
C
at most 2
D
at most 3
Answer :
at most 2
Let, $$f\left( x \right) = {a_0}{x^2} + {a_1}x + {a_2}$$
$$\eqalign{
& g\left( x \right) = {b_0}{x^2} + {b_1}x + {b_2} \cr
& h\left( x \right) = {c_0}{x^2} + {c_1}x + {c_2} \cr} $$
Then, \[\Delta \left( x \right) = \left| {\begin{array}{*{20}{c}}
{f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\
{2{a_0}x + {a_1}}&{2{b_0}x + {b_1}}&{2{c_0}x + {c_1}}\\
{2{a_0}}&{2{b_0}}&{2{c_0}}
\end{array}} \right|\]
\[ = x\left| {\begin{array}{*{20}{c}}
{f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\
{2{a_0}}&{2{b_0}}&{2{c_0}}\\
{2{a_0}}&{2{b_0}}&{2{c_0}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\
{{a_1}}&{{b_1}}&{{c_1}}\\
{2{a_0}}&{2{b_0}}&{2{c_0}}
\end{array}} \right|\]
\[ = 0 + 2\left| {\begin{array}{*{20}{c}}
{f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\
{{a_1}}&{{b_1}}&{{c_1}}\\
{{a_0}}&{{b_0}}&{{c_0}}
\end{array}} \right|\]
$$ = 2\left[ {\left( {{b_1}{c_0} - {b_0}{c_1}} \right]f\left( x \right) - \left( {{a_1}{c_0} - {a_0}{c_1}} \right)g\left( x \right) + \left( {{a_1}{b_0} - {a_0}{b_1}} \right)h\left( x \right)} \right]$$
Hence degree of $$\Delta \left( x \right) \leqslant 2.$$
119.
The value of \[\left| {\begin{array}{*{20}{c}}
1&0&0&0&0 \\
2&2&0&0&0 \\
4&4&3&0&0 \\
5&5&5&4&0 \\
6&6&6&6&5
\end{array}} \right|\] is
The elements in the leading diagonal are 1, 2, 3, 4, 5. On one side of the leading diagonal all the elements are zero.
∴ the value of the determinant = the product of the elements in the leading diagonal.
120.
If \[P = \left[ \begin{array}{l}
1\,\,\,\,\,\,\,\alpha \,\,\,\,\,\,\,3\\
1\,\,\,\,\,\,\,3\,\,\,\,\,\,\,\,3\\
2\,\,\,\,\,\,4\,\,\,\,\,\,\,4
\end{array} \right]\] is the adjoint of a $$3 \times 3$$ matrix $$A$$ and $$\left| A \right| = 4,$$ then $$\alpha $$ is equal to: