Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

131. If the least number of zeroes in a lower triangular matrix is 10, then what is the order of the matrix ?

A $$3 \times 3$$
B $$4 \times 4$$
C $$5 \times 5$$
D $$10 \times 10$$
Answer :   $$4 \times 4$$

132. Let \[A = \left( \begin{array}{l} 1\,\,\,\,\,\,0\,\,\,\,\,\,0\\ 2\,\,\,\,\,\,1\,\,\,\,\,\,0\\ 3\,\,\,\,\,\,2\,\,\,\,\,\,1 \end{array} \right).\]    If $${u_1}$$ and $${u_2}$$ are column matrices such that \[A{u_1} = \left( \begin{array}{l} 1\\ 0\\ 0 \end{array} \right){\rm{and }}\,\,A{u_2} = \left( \begin{array}{l} 0\\ 1\\ 0 \end{array} \right),\]       then $${u_1} + {u_2}$$   is equal to:

A \[\left( \begin{array}{l} - 1\\ \,\,\,\,\,1\\ \,\,\,\,\,0 \end{array} \right)\]
B \[\left( \begin{array}{l} - 1\\ \,\,\,\,\,1\\ - 1 \end{array} \right)\]
C \[\left( \begin{array}{l} - 1\\ - 1\\ \,\,\,\,\,0 \end{array} \right)\]
D \[\left( \begin{array}{l} \,\,\,\,\,1\\ - 1\\ - 1 \end{array} \right)\]
Answer :   \[\left( \begin{array}{l} \,\,\,\,\,1\\ - 1\\ - 1 \end{array} \right)\]

133. If \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} {\cos x}&x&1\\ {2\sin x}&{{x^2}}&{2x}\\ {\tan x}&x&1 \end{array}} \right|,\]     then $$\mathop {\lim }\limits_{x \to \infty } \left[ {\frac{{f'\left( x \right)}}{x}} \right]$$   is

A $$2$$
B $$- 2$$
C $$1$$
D $$ - 1$$
Answer :   $$- 2$$

134. If $$i = \sqrt { - 1} $$   and $$\root 4 \of 1 = \alpha ,\beta ,\gamma ,\delta $$    then \[\left| {\begin{array}{*{20}{c}} \alpha &\beta &\gamma &\delta \\ \beta &\gamma &\delta &\alpha \\ \gamma &\delta &\alpha &\beta \\ \delta &\alpha &\beta &\gamma \end{array}} \right|\]    is equal to

A $$i$$
B $$- i$$
C $$1$$
D $$0$$
Answer :   $$0$$

135. If $$f\left( x \right) = a + bx + c{x^2}$$    and $$\alpha ,\beta ,\lambda $$  are roots of the equation $$x^3 = 1,$$  then \[\left| {\begin{array}{*{20}{c}} a&b&c\\ b&c&a\\ c&a&b \end{array}} \right|\]   is equal to

A $$ f\left( \alpha \right) + f\left( \beta \right) + f\left( \lambda \right)$$
B $$f\left( \alpha \right)f\left( \beta \right) + f\left( \beta \right)f\left( \lambda \right) + f\left( \gamma \right) + f\left( \alpha \right)$$
C $$ f\left( \alpha \right)f\left( \beta \right)f\left( \lambda \right)$$
D $$ - f\left( \alpha \right)f\left( \beta \right)f\left( \lambda \right)$$
Answer :   $$ - f\left( \alpha \right)f\left( \beta \right)f\left( \lambda \right)$$

136. If \[\left| {\begin{array}{*{20}{c}} {6i}&{ - 3i}&1 \\ 4&{3i}&{ - 1} \\ {20}&3&i \end{array}} \right| = x + iy\]      then

A $$x = 3, y = 1$$
B $$x = 1, y = 3$$
C $$x = 0, y = 3$$
D $$x = 0, y = 0$$
Answer :   $$x = 0, y = 0$$

137. Let $$A$$ be a $$2 \times 2$$  matrix with non-zero entries and let $${A^2} = I,$$  where $$I$$ is $$2 \times 2$$  identity matrix. Define
$${\text{Tr}}\left( A \right) = $$   sum of diagonal elements of $$A$$ and
$$\left| A \right| = $$  determinant of matrix $$A.$$
Statement - 1 : $${\text{Tr}}\left( A \right) = 0$$
Statement - 2 : $$\left| A \right| = 1.$$

A Statement - 1 is true, Statement - 2 is true ; Statement - 2 is not a correct explanation for Statement - 1.
B Statement - 1 is true, Statement - 2 is false.
C Statement - 1 is false, Statement - 2 is true .
D Statement - 1 is true, Statement - 2 is true ; Statement - 2 is a correct explanation for Statement - 1.
Answer :   Statement - 1 is true, Statement - 2 is false.

138. If $$A$$ and $$B$$ are two matrices such that $$AB = A$$   and $$BA = B,$$   then which one of the following is correct ?

A $${\left( {{A^T}} \right)^2} = {A^T}$$
B $${\left( {{A^T}} \right)^2} = {B^T}$$
C $${\left( {{A^T}} \right)^2} = {\left( {{A^{ - 1}}} \right)^{ - 1}}$$
D None of the above
Answer :   $${\left( {{A^T}} \right)^2} = {A^T}$$

139. If \[A = \left[ \begin{array}{l} \alpha \,\,\,\,\,\,\,2\\ 2\,\,\,\,\,\,\,\,\alpha \end{array} \right]\]   and $$\left| {{A^3}} \right| = 125$$   then the value of $$\alpha $$ is

A $$ \pm 1$$
B $$ \pm 2$$
C $$ \pm 3$$
D $$ \pm 5$$
Answer :   $$ \pm 3$$

140. If \[A = \left[ {\begin{array}{*{20}{c}} {\cos \theta }&{\sin \theta }\\ { - \sin \theta }&{\cos \theta } \end{array}} \right]\]    then $$\mathop {\lim }\limits_{x \to \infty } \frac{1}{n}{A^n}$$   is

A a null matrix
B an identity matrix
C \[\left[ {\begin{array}{*{20}{c}} 0&1\\ { - 1}&0 \end{array}} \right]\]
D None of these
Answer :   a null matrix