Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

11. Let $$f\left( x \right)$$  be a differentiable function and $$f\left( 1 \right) = 2.$$   If $$\mathop {\lim }\limits_{x \to 1} \int_2^{f\left( x \right)} {\frac{{2t}}{{x - 1}}dt} = 4$$     then the value of $$f'\left( 1 \right)$$  is :

A 1
B 2
C 4
D none of these
Answer :   1

12. If $$f\left( x \right) = \int_x^{{x^2}} {\frac{{dt}}{{1 + {t^3}}}} $$    then $$f'\left( 2 \right)$$  is equal to :

A $$\frac{{101}}{{585}}$$
B $$\frac{{ - 29}}{{585}}$$
C $$\frac{{ - 56}}{{585}}$$
D none of these
Answer :   $$\frac{{ - 29}}{{585}}$$

13. The figure shows as triangle $$AOB$$  and the parabola $$y = {x^2}.$$   The ratio of the area of the triangle $$AOB$$  to the area of the region $$AOB$$  of the parabola $$y = {x^2}$$  is equal to
Application of Integration mcq question image

A $$\frac{3}{5}$$
B $$\frac{3}{4}$$
C $$\frac{7}{8}$$
D $$\frac{5}{6}$$
Answer :   $$\frac{3}{4}$$

14. Area bounded by the curves $$y = \left[ {\frac{{{x^2}}}{{64}} + 2} \right]$$   ( $$\left[ . \right]$$ denotes the greatest integer function ), $$v = x – 1$$   and $$x = 0,$$  above the $$x$$-axis is :

A 2 square units
B 3 square units
C 4 square units
D None of these
Answer :   4 square units

15. $$\int_{\frac{\pi }{5}}^{\frac{{3\pi }}{{10}}} {\frac{{\cos \,x}}{{\cos \,x + \sin \,x}}dx} $$     is equal to :

A $$\pi $$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{4}$$
D none of these
Answer :   none of these

16. If $$f\left( x \right)$$  and $$g\left( x \right)$$  be continuous functions over the closed interval $$\left[ {0,\,a} \right]$$  such that $$f\left( x \right) = f\left( {a - x} \right)$$    and $$g\left( x \right) + g\left( {a - x} \right) = 2.$$     Then $$\int_0^a {f\left( x \right).g\left( x \right)dx} $$     is equal to :

A $$\int_0^a {f\left( x \right)dx} $$
B $$\int_0^a {g\left( x \right)dx} $$
C $$2a$$
D none of these
Answer :   $$\int_0^a {f\left( x \right)dx} $$

17. $$\int_0^a {\left\{ {f\left( x \right) + f\left( { - x} \right)} \right\}dx} $$     is equal to :

A $$2\int_0^a {f\left( x \right)dx} $$
B $$\int_{ - a}^a {f\left( x \right)dx} $$
C 0
D $$ - \int_{ - a}^a {f\left( { - x} \right)dx} $$
Answer :   $$\int_{ - a}^a {f\left( x \right)dx} $$

18. The area enclosed by the curve $$x = a\,{\cos ^3}t,\,y = b\,{\sin ^3}t$$     and the positive directions of $$x$$-axis and $$y$$-axis is :

A $$\frac{{\pi ab}}{4}$$
B $$\frac{{\pi ab}}{{32}}$$
C $$\frac{{3\pi ab}}{{32}}$$
D $$\frac{{5\pi ab}}{{32}}$$
Answer :   $$\frac{{3\pi ab}}{{32}}$$

19. If $${c_1} = y = \frac{1}{{1 + {x^2}}}$$    and $${c_2} = y = \frac{{{x^2}}}{2}$$   be two curves lying in $$XY$$ -plane, then :

A area bounded by curve $$y = \frac{1}{{1 + {x^2}}}$$   and $$y = 0$$  is $$\frac{\pi }{2}$$
B area bounded by $${c_1}$$ and $${c_2}$$ is $$\frac{\pi }{2} - 1$$
C area bounded by $${c_1}$$ and $${c_2}$$ is $$1 - \frac{\pi }{2}$$
D area bounded by curve $$y = \frac{1}{{1 + {x^2}}}$$   and $$x$$-axis is $$\frac{\pi }{2}$$
Answer :   area bounded by $${c_1}$$ and $${c_2}$$ is $$\frac{\pi }{2} - 1$$

20. What is the area bounded by $$y = \tan \,x,\,y = 0$$    and $$x = \frac{\pi }{4}\,?$$

A $$\ln\,2$$  square units
B $$\frac{{\ln\,2}}{2}$$  square units
C $$2\left( {\ln} \right)2$$   square units
D None of these
Answer :   $$\frac{{\ln\,2}}{2}$$  square units