Application of Integration MCQ Questions & Answers in Calculus | Maths
Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
Let $$f\left( x \right)$$ be a differentiable function and $$f\left( 1 \right) = 2.$$ If $$\mathop {\lim }\limits_{x \to 1} \int_2^{f\left( x \right)} {\frac{{2t}}{{x - 1}}dt} = 4$$ then the value of $$f'\left( 1 \right)$$ is :
13.
The figure shows as triangle $$AOB$$ and the parabola $$y = {x^2}.$$ The ratio of the area of the triangle $$AOB$$ to the area of the region $$AOB$$ of the parabola $$y = {x^2}$$ is equal to
A
$$\frac{3}{5}$$
B
$$\frac{3}{4}$$
C
$$\frac{7}{8}$$
D
$$\frac{5}{6}$$
Answer :
$$\frac{3}{4}$$
Area of $$\Delta AOB = \frac{1}{2} \times 2a \times {a^2} = {a^3}{\text{units}}$$
Area of region $$AOB = 2\int\limits_0^{{a^2}} {x\,dy} = 2\int\limits_0^{{a^2}} {\sqrt y \,dy} = 2\left[ {\frac{{{y^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_0^{{a^2}} = \frac{4}{3}{a^3}{\text{units}}$$
$$\therefore $$ ratio of areas $$ = \frac{{{a^3}}}{{\frac{4}{3}{a^3}}} = \frac{3}{4}$$
14.
Area bounded by the curves $$y = \left[ {\frac{{{x^2}}}{{64}} + 2} \right]$$
( $$\left[ . \right]$$ denotes the greatest integer function ), $$v = x – 1$$ and $$x = 0,$$ above the $$x$$-axis is :
A
2 square units
B
3 square units
C
4 square units
D
None of these
Answer :
4 square units
$$\eqalign{
& {\text{We have, }}0 \leqslant \frac{{{x^2}}}{{64}} < 1,{\text{ if}}\, - 8 < x < 8 \cr
& \Rightarrow 2 \leqslant \frac{{{x^2}}}{{64}} + 2 < 3,{\text{ if }}\,\left| x \right| < 8 \cr
& \Rightarrow y = \left[ {\frac{{{x^2}}}{{64}} + 2} \right] = 2,{\text{ if }}\,\left| x \right| < 8 \cr} $$
The graphs of the given curves is as shown in figure.
$$\eqalign{
& {\text{Required area}} = {\text{area of the shaded region}} \cr
& = \int_0^2 {x\,dy} \cr
& = \int_0^2 {\left( {y + 1} \right)dy} \cr
& = \frac{1}{2}\left[ {\left( {y + 1} \right)} \right]_0^2 \cr
& = \frac{9}{2} - \frac{1}{2} \cr
& = 4{\text{ sq}}{\text{. units}} \cr} $$
15.
$$\int_{\frac{\pi }{5}}^{\frac{{3\pi }}{{10}}} {\frac{{\cos \,x}}{{\cos \,x + \sin \,x}}dx} $$ is equal to :
16.
If $$f\left( x \right)$$ and $$g\left( x \right)$$ be continuous functions over the closed interval $$\left[ {0,\,a} \right]$$ such that $$f\left( x \right) = f\left( {a - x} \right)$$ and $$g\left( x \right) + g\left( {a - x} \right) = 2.$$ Then $$\int_0^a {f\left( x \right).g\left( x \right)dx} $$ is equal to :
A
$$\int_0^a {f\left( x \right)dx} $$
B
$$\int_0^a {g\left( x \right)dx} $$
C
$$2a$$
D
none of these
Answer :
$$\int_0^a {f\left( x \right)dx} $$
$$\eqalign{
& \int_0^a {f\left( x \right).g\left( x \right)dx = } \int_0^a {f\left( {a - x} \right).g\left( {a - x} \right)dx} \,\,\,\,\left( {{\text{by property}}} \right) \cr
& = \int_0^a {f\left( x \right).\left\{ {2 - g\left( x \right)} \right\}dx} \,\,\,\,\,\,\left( {{\text{from the question}}} \right) \cr
& = 2\int_0^a {f\left( x \right)dx - } \int_0^a {f\left( x \right).g\left( x \right)dx} \cr
& \therefore \,\,2\int_0^a {f\left( x \right).g\left( x \right)dx} = 2\int_0^a {f\left( x \right)dx} \cr} $$
17.
$$\int_0^a {\left\{ {f\left( x \right) + f\left( { - x} \right)} \right\}dx} $$ is equal to :