Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

51. Let $$\int_a^b {f\left( x \right)dx = p} $$    and $$\int_a^b {\left| {f\left( x \right)} \right|dx = q.} $$    Then :

A $$\left| p \right| \leqslant q$$
B $$p > q$$
C $$p + q = 0$$
D none of these
Answer :   $$\left| p \right| \leqslant q$$

52. If $$I = \int_0^1 {\frac{{x\,dx}}{{8 + {x^3}}}} $$    then the smallest interval in which $$I$$ lies is

A $$\left( {0,\,\frac{1}{8}} \right)$$
B $$\left( {0,\,\frac{1}{9}} \right)$$
C $$\left( {0,\,\frac{1}{{10}}} \right)$$
D $$\left( {0,\,\frac{1}{7}} \right)$$
Answer :   $$\left( {0,\,\frac{1}{9}} \right)$$

53. If $$\left[ x \right]$$ denotes the greatest integer less than or equal to $$x$$ then $$\int_0^\infty {\left[ {\frac{2}{{{e^x}}}} \right]dx} $$    is equal to :

A $${\log _e}2$$
B $${e^2}$$
C 0
D $$\frac{2}{e}$$
Answer :   $${\log _e}2$$

54. The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A $$\frac{1}{{\sqrt 3 }}$$
B $$\frac{1}{2}$$
C $$1$$
D $$\frac{1}{3}$$
Answer :   $$\frac{1}{{\sqrt 3 }}$$

55. If $$y = f\left( x \right)$$   makes $$+ve$$  intercept of $$2$$ and $$0$$ unit on $$x$$ and $$y$$ axes and encloses an area of $$\frac{3}{4}$$ square unit with the axes then $$\int\limits_0^2 {x\,f'\left( x \right)dx} $$   is :

A $$\frac{3}{2}$$
B $$1$$
C $$\frac{5}{4}$$
D $$ - \frac{3}{4}$$
Answer :   $$ - \frac{3}{4}$$

56. What is the area bounded by the curves $$y = {e^x},\,y = {e^{ - x}}$$    and the straight line $$x = 1\,?$$

A $$\left( {e + \frac{1}{e}} \right)\,{\text{square}}\,{\text{unit}}$$
B $$\left( {e - \frac{1}{e}} \right)\,{\text{square}}\,{\text{unit}}$$
C $$\left( {e + \frac{1}{e} - 2} \right)\,{\text{square}}\,{\text{unit}}$$
D $$\left( {e - \frac{1}{e} - 2} \right)\,{\text{square}}\,{\text{unit}}$$
Answer :   $$\left( {e + \frac{1}{e} - 2} \right)\,{\text{square}}\,{\text{unit}}$$

57. The area bounded by the curve $$y = \sqrt {4 - {x^2}} $$    and the line $$y=0$$  is :

A $$4\pi $$
B $$2\pi $$
C $$\pi $$
D $$\frac{\pi }{2}$$
Answer :   $$2\pi $$

58. The area enclosed between the curves $$y = {\log _e}\left( {x + e} \right),\,x = {\log _e}\left( {\frac{1}{y}} \right),$$       and the $$x$$-axis is :

A 2 sq. units
B 1 sq. unit
C 4 sq. units
D None of these
Answer :   2 sq. units

59. $$\int_{\frac{a}{4}}^{\frac{{3a}}{4}} {\frac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx$$      is equal to :

A $$\frac{a}{2}$$
B $$a$$
C $$-a$$
D none of these
Answer :   $$\frac{a}{2}$$

60. The area bounded by the curve $${x^2} = ky,\,k > 0$$    and the line $$y=3$$  is $$12\,{\text{uni}}{{\text{t}}^2}.$$   Then $$k$$ is :

A 3
B $$3\sqrt 3 $$
C $$\frac{3}{4}$$
D none of these
Answer :   3