Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

11. If $$f\left( x \right)$$  be a quadratic polynomial such that $$f\left( 0 \right) = 2,\,f'\left( 0 \right) = - 3$$     and $$f''\left( 0 \right) = 4$$   then $$\int_{ - 1}^1 {f\left( x \right)dx} $$    is equal to :

A $$-3$$
B $$\frac{{16}}{3}$$
C 0
D none of these
Answer :   $$\frac{{16}}{3}$$

12. If $$f\left( {p,\,q} \right) = \int_0^{\frac{\pi }{2}} {{{\cos }^p}x\,\cos \,qx\,dx,} $$       then :

A $$f\left( {p,\,q} \right) = \frac{q}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$
B $$f\left( {p,\,q} \right) = \frac{p}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$
C $$f\left( {p,\,q} \right) = - \frac{p}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$
D $$f\left( {p,\,q} \right) = - \frac{q}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$
Answer :   $$f\left( {p,\,q} \right) = \frac{p}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$

13. If $${I_n} = \int\limits_0^{\frac{\pi }{4}} {{{\tan }^n}x\,dx} $$     then what is $${I_n} + {I_{n - 2}}$$   equal to ?

A $$\frac{1}{n}$$
B $$\frac{1}{{\left( {n - 1} \right)}}$$
C $$\frac{n}{{\left( {n - 1} \right)}}$$
D $$\frac{1}{{\left( {n - 2} \right)}}$$
Answer :   $$\frac{1}{{\left( {n - 1} \right)}}$$

14. Solve this : $$\int\limits_0^1 {\frac{1}{{\left( {{x^2} + 16} \right)\left( {{x^2} + 25} \right)}}} dx = ?$$

A $$\frac{1}{5}\left[ {\frac{1}{4}{{\tan }^{ - 1}}\left( {\frac{1}{4}} \right) - \frac{1}{5}{{\tan }^{ - 1}}\left( {\frac{1}{5}} \right)} \right]$$
B $$\frac{1}{9}\left[ {\frac{1}{4}{{\tan }^{ - 1}}\left( {\frac{1}{4}} \right) - \frac{1}{5}{{\tan }^{ - 1}}\left( {\frac{1}{5}} \right)} \right]$$
C $$\frac{1}{4}\left[ {\frac{1}{4}{{\tan }^{ - 1}}\left( {\frac{1}{4}} \right) - \frac{1}{5}{{\tan }^{ - 1}}\left( {\frac{1}{5}} \right)} \right]$$
D $$\frac{1}{9}\left[ {\frac{1}{5}{{\tan }^{ - 1}}\left( {\frac{1}{4}} \right) - \frac{1}{5}{{\tan }^{ - 1}}\left( {\frac{1}{5}} \right)} \right]$$
Answer :   $$\frac{1}{9}\left[ {\frac{1}{4}{{\tan }^{ - 1}}\left( {\frac{1}{4}} \right) - \frac{1}{5}{{\tan }^{ - 1}}\left( {\frac{1}{5}} \right)} \right]$$

15. What is $$\int\limits_0^{\frac{\pi }{2}} {\sin \,2x\,\ell n\left( {\cot \,x} \right)dx} $$     equal to ?

A $$0$$
B $$\pi \,\ell n\,2$$
C $$ - \pi \,\ell n\,2$$
D $$\frac{{\pi \,\ell n\,2}}{2}$$
Answer :   $$0$$

16. If $$f\left( x \right)$$  and $$\phi \left( x \right)$$  are continuous functions on the interval $$\left[ {0,\,4} \right]$$  satisfying $$f\left( x \right) = f\left( {4 - x} \right),\,\phi \left( x \right) + \phi \left( {4 - x} \right) = 3$$        and $$\int\limits_0^4 {f\left( x \right)dx = 2} ,$$   then $$\int\limits_0^4 {f\left( x \right)\phi \left( x \right)dx} = ?$$

A 3
B 6
C 2
D None of these
Answer :   3

17. $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{r = 1}^{2n} {\frac{r}{{\sqrt {{n^2} + {r^2}} }}} $$     equals :

A $$1 + \sqrt 5 $$
B $$ - 1 + \sqrt 5 $$
C $$ - 1 + \sqrt 2 $$
D $$1 + \sqrt 2 $$
Answer :   $$ - 1 + \sqrt 5 $$

18. If $$m$$ is an integer, then $$\int_0^\pi {\frac{{\sin \left( {2mx} \right)}}{{\sin \,x}}dx} $$     is equal to :

A $$1$$
B $$2$$
C $$0$$
D $$\pi $$
Answer :   $$0$$

19. The value of $$\int\limits_{\sqrt {\ell n2} }^{\sqrt {\ell n3} } {\frac{{x\,\sin \,{x^2}}}{{\sin \,{x^2} + \sin \left( {\ell n6 - {x^2}} \right)}}dx} ,$$       is-

A $$\frac{1}{4}\ell n\frac{3}{2}$$
B $$\frac{1}{2}\ell n\frac{3}{2}$$
C $$\ell n\frac{3}{2}$$
D $$\frac{1}{6}\ell n\frac{3}{2}$$
Answer :   $$\frac{1}{4}\ell n\frac{3}{2}$$

20. $$\int\limits_{ - 2}^0 {\left\{ {{x^3} + 3{x^2} + 3x + 3 + \left( {x + 1} \right)\,\cos \left( {x + 1} \right)} \right\}dx} $$          is equal to-

A $$ - 4$$
B $$0$$
C $$4$$
D $$6$$
Answer :   $$4$$