Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

21. If $${I_1} = \int\limits_0^{\frac{\pi }{2}} {\cos \left( {\sin \,x} \right)dx\,;\,} {I_2} = \int\limits_0^{\frac{\pi }{2}} {\sin \left( {\cos \,x} \right)dx} $$         and $${I_3} = \int\limits_0^{\frac{\pi }{2}} {\cos \,x\,dx,} $$    then :

A $${I_1} > {I_3} > {I_2}$$
B $${I_3} > {I_1} > {I_2}$$
C $${I_1} > {I_2} > {I_3}$$
D $${I_3} > {I_2} > {I_1}$$
Answer :   $${I_1} > {I_3} > {I_2}$$

22. Let $$f$$ be a non-negative function defined on the interval [0, 1]. If $$\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}dt} = \int\limits_0^x {f\left( t \right)dx,\,\,\,0 \leqslant x \leqslant 1,} } $$         and $$f\left( 0 \right) = 0,$$   then-

A $$f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) > \frac{1}{3}$$
B $$f\left( {\frac{1}{2}} \right) > \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) > \frac{1}{3}$$
C $$f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$
D $$f\left( {\frac{1}{2}} \right) > \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$
Answer :   $$f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$

23. $$\int_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 + \cos \,x}}} $$    is equal to :

A 2
B $$-2$$
C $$\frac{1}{2}$$
D $$ - \frac{1}{2}$$
Answer :   2

24. What is $$\int\limits_0^1 {\frac{{{{\tan }^{ - 1}}}}{{1 + {x^2}}}dx} $$    equal to?

A $$\frac{\pi }{4}$$
B $$\frac{\pi }{8}$$
C $$\frac{{{\pi ^2}}}{8}$$
D $$\frac{{{\pi ^2}}}{{32}}$$
Answer :   $$\frac{{{\pi ^2}}}{{32}}$$

25. If $$f\left( x \right)$$  is an even function, then what is $$\int\limits_0^\pi {f\left( {\cos \,x} \right)} dx$$    equal to?

A $$0$$
B $$\int\limits_0^{\frac{\pi }{2}} {f\left( {\cos \,x} \right)} dx$$
C $$2\int\limits_0^{\frac{\pi }{2}} {f\left( {\cos \,x} \right)} dx$$
D $$1$$
Answer :   $$2\int\limits_0^{\frac{\pi }{2}} {f\left( {\cos \,x} \right)} dx$$

26. If $$\int\limits_{ - 3}^2 {f\left( x \right)dx} = \frac{7}{3}$$    and $$\int\limits_{ - 3}^9 {f\left( x \right)dx} = - \frac{5}{6},$$    then what is the value of $$\int\limits_2^9 {f\left( x \right)dx} \,\,?$$

A $$ - \frac{{19}}{6}$$
B $$\frac{{19}}{6}$$
C $$\frac{3}{2}$$
D $$ - \frac{3}{2}$$
Answer :   $$ - \frac{{19}}{6}$$

27. If $$f\left( x \right) = \ln \left( {x - \sqrt {1 + {x^2}} } \right),$$      then what is $$\int {f''\left( x \right)dx} $$   equal to ?

A $$\frac{1}{{\left( {x - \sqrt {1 + {x^2}} } \right)}} + c$$
B $$ - \frac{1}{{\sqrt {1 + {x^2}} }} + c$$
C $$ - \sqrt {1 + {x^2}} + c$$
D $$\ln \left( {x - \sqrt {1 + {x^2}} } \right) + c$$
Answer :   $$ - \frac{1}{{\sqrt {1 + {x^2}} }} + c$$

28. Let $$T>0$$  be a fixed real number. Suppose $$f$$ is a continuous function such that for all $$x \in R,\,f\left( {x + T} \right) = f\left( x \right).$$
If $$I = \int\limits_0^T {f\left( x \right)dx} $$     then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$     is-

A $$\frac{3}{{2I}}$$
B $$2I$$
C $$3I$$
D $$6I$$
Answer :   $$3I$$

29. Let the straight line $$x = b$$   divide the area enclosed by $$y = {\left( {1 - x} \right)^2},\,y = 0$$     and $$x=0$$   into two parts $${R_1}\left( {0 \leqslant x \leqslant b} \right)$$     and $${R_2}\left( {b \leqslant x \leqslant 1} \right)$$   such that $${R_1} - {R_2} = \frac{1}{4}.$$    Then $$b$$ equals-

A $$\frac{3}{4}$$
B $$\frac{1}{2}$$
C $$\frac{1}{3}$$
D $$\frac{1}{4}$$
Answer :   $$\frac{1}{2}$$

30. The value of $$\int\limits_1^a {\left[ x \right]f'\left( x \right)} dx,\,a > 1$$     where $$\left[ x \right]$$ denotes the greatest integer not exceeding $$x$$ is-

A $$af\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$
B $$\left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$
C $$\left[ a \right]f\left( {\left[ a \right]} \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( a \right)} \right\}$$
D $$af\left( {\left[ a \right]} \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( a \right)} \right\}$$
Answer :   $$\left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$