22.
Let $$f$$ be a non-negative function defined on the interval [0, 1]. If $$\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}dt} = \int\limits_0^x {f\left( t \right)dx,\,\,\,0 \leqslant x \leqslant 1,} } $$ and $$f\left( 0 \right) = 0,$$ then-
A
$$f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) > \frac{1}{3}$$
B
$$f\left( {\frac{1}{2}} \right) > \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) > \frac{1}{3}$$
C
$$f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$
D
$$f\left( {\frac{1}{2}} \right) > \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$
Given that $$f$$ is a non negative function defined on $$\left[ {0,\,1} \right]$$ and $$\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} } dt = \int\limits_0^x {f\left( t \right)dt,\,\,\,\,0 \leqslant x \leqslant 1} $$
Differentiating both sides with respect to $$x,$$ we get
$$\eqalign{
& \sqrt {1 - {{\left[ {f'\left( x \right)} \right]}^2}} = f\left( x \right) \cr
& \Rightarrow 1 - {\left[ {f'\left( x \right)} \right]^2} = {\left[ {f\left( x \right)} \right]^2} \cr
& \Rightarrow {\left[ {f'\left( x \right)} \right]^2} = 1 - {\left[ {f\left( x \right)} \right]^2} \cr
& \Rightarrow \frac{d}{{dx}}f\left( x \right) = \pm \sqrt {1 - {{\left[ {f\left( x \right)} \right]}^2}} \cr
& \Rightarrow \pm \frac{{d\,f\left( x \right)}}{{\sqrt {1 - {{\left[ {f\left( x \right)} \right]}^2}} }} = dx \cr} $$
Integrating both sides with respect to $$x,$$ we get
$$ \pm \frac{{d\,f\left( x \right)}}{{\sqrt {1 - {{\left[ {f\left( x \right)} \right]}^2}} }} = \int {dx} \,\,\, \Rightarrow \pm {\sin ^{ - 1}}f\left( x \right) = x + C$$
$$\because $$ Given that $$f\left( 0 \right) = 0\,\,\, \Rightarrow C = 0$$
Hence $$f\left( x \right) = \pm \sin \,x$$
But as $$f\left( x \right)$$ is a non negative function on $$\left[ {0,\,1} \right]$$
$$\therefore f\left( x \right) = \sin \,x$$
Now $$\sin \,x < x,\,\forall \,x > 0$$
$$\therefore \,f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$
23.
$$\int_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 + \cos \,x}}} $$ is equal to :
Since $$f\left( x \right)$$ is an even function therefore $$\int\limits_0^\pi {f\left( x \right)} dx = 2\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)} dx$$
Hence, $$\int\limits_0^\pi {f\left( {\cos \,x} \right)} dx = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\cos \,x} \right)} dx$$
26.
If $$\int\limits_{ - 3}^2 {f\left( x \right)dx} = \frac{7}{3}$$ and $$\int\limits_{ - 3}^9 {f\left( x \right)dx} = - \frac{5}{6},$$ then what is the value of $$\int\limits_2^9 {f\left( x \right)dx} \,\,?$$
A
$$ - \frac{{19}}{6}$$
B
$$\frac{{19}}{6}$$
C
$$\frac{3}{2}$$
D
$$ - \frac{3}{2}$$
Answer :
$$ - \frac{{19}}{6}$$
Value of the integral $$\int\limits_2^9 {f\left( x \right)dx} $$
$$ = \int\limits_{ - 3}^9 {f\left( x \right)dx} - \int\limits_{ - 3}^2 {f\left( x \right)dx} ......\left( {\text{i}} \right)$$
Given, $$\int\limits_{ - 3}^9 {f\left( x \right)dx} = - \frac{5}{6}{\text{ and }}\int\limits_{ - 3}^2 {f\left( x \right)dx} = \frac{7}{3}$$
Putting these values in equation $$\left( {\text{i}} \right)$$
$$\int\limits_2^9 {f\left( x \right)dx} = - \frac{5}{6} - \frac{7}{3} = - \frac{{19}}{6}$$
27.
If $$f\left( x \right) = \ln \left( {x - \sqrt {1 + {x^2}} } \right),$$ then what is $$\int {f''\left( x \right)dx} $$ equal to ?
Given that $$f\left( x \right) = \ln \left( {x - \sqrt {1 + {x^2}} } \right)$$
$$\int {f''\left( x \right)dx} = f'\left( x \right) + c$$ where $$c$$ is a constant
$$\eqalign{
& = \frac{1}{{\left( {x - \sqrt {1 + {x^2}} } \right)}}.\left( {1 - \frac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right) + c \cr
& = \frac{{ - \left( {x - \sqrt {1 + {x^2}} } \right)}}{{\left( {\sqrt {1 + {x^2}} } \right)\left( {x - \sqrt {1 + {x^2}} } \right)}} + c \cr
& = - \frac{1}{{\sqrt {1 + {x^2}} }} + c \cr} $$
28.
Let $$T>0$$ be a fixed real number. Suppose $$f$$ is a continuous
function such that for all $$x \in R,\,f\left( {x + T} \right) = f\left( x \right).$$
If $$I = \int\limits_0^T {f\left( x \right)dx} $$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$ is-
A
$$\frac{3}{{2I}}$$
B
$$2I$$
C
$$3I$$
D
$$6I$$
Answer :
$$3I$$
Given that $$T>0$$ is a fixed real number. $$f$$ is continuous $$\forall \,x \in R$$ such that $$f\left( {x + T} \right) = f\left( x \right)$$
$$ \Rightarrow f$$ is a periodic function of period $$T$$
Also given $$I = \int_0^T {f\left( x \right)dx} $$
Then, let $${I_1} = \int_3^{3 + 3T} {f\left( {2x} \right)dx} $$
$$\eqalign{
& {\text{Put }}2x = z\,\, \Rightarrow dx = \frac{{dz}}{2} \cr
& {\text{Also as }}x \to 3,\,z \to 6;\, \cr
& {\text{As }}x \to 3 + 3T,\,z \to 6 + 6T \cr
& {I_1} = \frac{1}{2}\int_6^{6 + 6T} {f\left( z \right)dz} \cr
& = \frac{1}{2}\left[ {\int_6^T {f\left( z \right)dz} + \sum\limits_{n = 1}^5 {\int_{nT}^{\left( {n + 1} \right)T} {f\left( z \right)dz} } + \int_{6T}^{6T + 6} {f\left( z \right)dz} } \right] \cr
& {\text{Now, }}\int_{nT}^{\left( {n + 1} \right)T} {f\left( z \right)dz} = \int_0^T {f\left( {nT + u} \right)du,} \cr
& {\text{where }}z = nT + u \cr
& = \int_0^T {f\left( u \right)du = 1\,\,\,\,\,\,\,\,\,\,\left[ {\because f\left( {nT + u} \right) = f\left( u \right)} \right]} \cr} $$
Similarly, we can show that
$$\eqalign{
& \int_{6T}^{6T + 6} {f\left( z \right)dz} = \int_0^6 {f\left( z \right)dz} \cr
& \therefore {I_1} = \frac{1}{2}\left[ {\int\limits_6^T {f\left( z \right)dz} + 5I + \int\limits_0^6 {f\left( z \right)dz} } \right] \cr
& = \frac{1}{2}\left[ {\int\limits_6^T {f\left( z \right)dz} + 5I} \right] \cr
& = \frac{1}{2}\left( {6I} \right) \cr
& = 3I \cr} $$
29.
Let the straight line $$x = b$$ divide the area enclosed by $$y = {\left( {1 - x} \right)^2},\,y = 0$$ and $$x=0$$ into two parts $${R_1}\left( {0 \leqslant x \leqslant b} \right)$$ and $${R_2}\left( {b \leqslant x \leqslant 1} \right)$$ such that $${R_1} - {R_2} = \frac{1}{4}.$$ Then $$b$$ equals-
30.
The value of $$\int\limits_1^a {\left[ x \right]f'\left( x \right)} dx,\,a > 1$$ where $$\left[ x \right]$$ denotes the greatest integer not exceeding $$x$$ is-
A
$$af\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$
B
$$\left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$
C
$$\left[ a \right]f\left( {\left[ a \right]} \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( a \right)} \right\}$$
D
$$af\left( {\left[ a \right]} \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( a \right)} \right\}$$
Answer :
$$\left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .....f\left( {\left[ a \right]} \right)} \right\}$$
Let $$a=k+ h$$ where $$k$$ is an integer such that $$\left[ a \right] = k$$ and $$0 \leqslant h < 1$$
$$\eqalign{
& \therefore \int\limits_1^a {\left[ x \right]f'\left( x \right)dx} = \int\limits_1^2 {1\,f'\left( x \right)dx} + \int\limits_2^3 {2\,f'\left( x \right)dx} + .....\int\limits_{k - 1}^k {\left( {k - 1} \right)dx} + \int\limits_k^{k + h} {k\,f'\left( x \right)dx} \cr
& = \left\{ {f\left( 2 \right) - f\left( 1 \right)} \right\} + 2\left\{ {f\left( 3 \right) - f\left( 2 \right)} \right\} + 3\left\{ {f\left( 4 \right) - f\left( 3 \right)} \right\} + ..... + \left( {k - 1} \right)\left\{ {f\left( k \right) - f\left( {k - 1} \right)} \right\} + k\left\{ {f\left( {k + h} \right) - f\left( k \right)} \right\} \cr
& = - f\left( 1 \right) - f\left( 2 \right) - f\left( 3 \right)..... - f\left( k \right) - k\,f\left( {k + h} \right) \cr
& = \left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + f\left( 3 \right) + .....f\left( {\left[ a \right]} \right)} \right\} \cr} $$