36.
If $$f\left( x \right) = A\,\sin \left( {\frac{{\pi x}}{2}} \right) + B$$ and $$f'\left( {\frac{1}{2}} \right) = \sqrt 2 $$ and $$\int_0^1 {f\left( x \right)dx = \frac{{2A}}{\pi },} $$ then what is the value of $$B\,?$$
37.
Let $$f:R \to R$$ and $$g:R \to R$$ be continuous functions. Then the value of the integral $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} \left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx$$ is-
A
$$\pi $$
B
$$1$$
C
$$-1$$
D
$$0$$
Answer :
$$0$$
We have,
$$\eqalign{
& I = \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} \left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx \cr
& {\text{Let }}F\left( x \right) = \left( {f\left( x \right) + f\left( { - x} \right)} \right)\left( {g\left( x \right) - g\left( { - x} \right)} \right) \cr
& {\text{then }}F\left( { - x} \right) = \left( {f\left( { - x} \right) + f\left( x \right)} \right)\left( {g\left( { - x} \right) - g\left( x \right)} \right) \cr
& = - \left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right] \cr
& = - F\left( x \right) \cr} $$
$$\therefore F\left( x \right)$$ is an odd function,
$$\therefore $$ We get $$I=0$$
38.
Let $$f:{\bf{R}} \to {\bf{R}}$$ and $$g:{\bf{R}} \to {\bf{R}}$$ be continuous functions. Then the value of $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left\{ {f\left( x \right) + f\left( { - x} \right)} \right\}\left\{ {g\left( x \right) - g\left( { - x} \right)} \right\}} dx{\text{ is :}}$$
39.
What is the value of $$\int\limits_0^1 {\left( {x - 1} \right){e^{ - x}}dx\,?} $$
A
$$0$$
B
$$e$$
C
$$\frac{1}{e}$$
D
$$\frac{{ - 1}}{e}$$
Answer :
$$\frac{{ - 1}}{e}$$
Given integral is $$I = \int_0^1 {\left( {x - 1} \right){e^{ - x}}dx} $$
Integrating by parts taking $$\left( {x - 1} \right)$$ as first function
We get,
$$\eqalign{
& I = \left[ {\left( {x - 1} \right)\left\{ { - {e^{ - x}}} \right\}} \right]_0^1 - \int_0^1 {1.\left( { - {e^{ - x}}} \right)dx} \cr
& = - \left( {1 - 1} \right)\frac{1}{e} + \left( { - 1} \right){e^0} + \left[ { - {e^{ - x}}} \right]_0^1 \cr
& = - 1 - \frac{1}{e} + 1 \cr
& = - \frac{1}{e} \cr} $$
40.
Let $$f\left( x \right)$$ be a function satisfying $$f'\left( x \right) = f\left( x \right)$$ with $$f\left( 0 \right) = 1$$ and $$g\left( x \right)$$ be a function that satisfies $$f\left( x \right) + g\left( x \right) = {x^2}.$$ Then the value of the integral $$\int\limits_0^1 {f\left( x \right)\,g\left( x \right)dx,} $$ is-
A
$$e + \frac{{{e^2}}}{2} + \frac{5}{2}$$
B
$$e - \frac{{{e^2}}}{2} - \frac{5}{2}$$
C
$$e + \frac{{{e^2}}}{2} - \frac{3}{2}$$
D
$$e - \frac{{{e^2}}}{2} - \frac{3}{2}$$
Answer :
$$e - \frac{{{e^2}}}{2} - \frac{3}{2}$$
Given $$f'\left( x \right) = f\left( x \right) \Rightarrow \frac{{f'\left( x \right)}}{{f\left( x \right)}} = 1$$
Integrating $$\log f\left( x \right) = x + c \Rightarrow f\left( x \right) = {e^{x + c}}$$
$$\eqalign{
& f\left( 0 \right) = 1 \Rightarrow f\left( x \right) = {e^x} \cr
& \therefore \int\limits_0^1 {f\left( x \right)\,g\left( x \right)} dx = \int\limits_0^1 {{e^x}\left( {{x^2} - {e^x}} \right)} dx \cr
& = \int\limits_0^1 {{x^2}{e^x}dx} - \int\limits_0^1 {{e^{2x}}dx} \cr
& = \left[ {{x^2}{e^x}} \right]_0^1 - 2\left[ {x{e^x} - {e^x}} \right]_0^1 - \frac{1}{2}\left[ {{e^{2x}}} \right]_0^1 \cr
& = e - \left[ {\frac{{{e^2}}}{2} - \frac{1}{2}} \right] - 2\left[ {e - e + 1} \right] \cr
& = e - \frac{{{e^2}}}{2} - \frac{3}{2} \cr} $$