Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

31. $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {\frac{1}{{\sqrt {nr} }}} $$    is equal to :

A 2
B 1
C 0
D none of these
Answer :   2

32. What is $$\int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{{{\sin }^5}x\,{{\cos }^3}x}}{{{x^4}}}dx} $$     is equal to ?

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{8}$$
D $$0$$
Answer :   $$0$$

33. $$\int\limits_0^\pi {\left[ {\cot \,x} \right]dx,} $$    where [ . ] denotes the greatest integer function, is equal to :

A $$1$$
B $$ - 1$$
C $$ - \frac{\pi }{2}$$
D $$\frac{\pi }{2}$$
Answer :   $$ - \frac{\pi }{2}$$

34. Find the value of $$\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} $$    where $$\left[ . \right]$$ is the greatest integer function :

A 31
B 22
C 23
D none of these
Answer :   31

35. The solution for $$x$$ of the equation is $$\int\limits_{\sqrt 2 }^x {\frac{{dt}}{{t\sqrt {{t^2} - 1} }} = \frac{\pi }{2}} $$     is-

A $$\frac{{\sqrt 3 }}{2}$$
B $$2\sqrt 2 $$
C $$2$$
D None
Answer :   None

36. If $$f\left( x \right) = A\,\sin \left( {\frac{{\pi x}}{2}} \right) + B$$      and $$f'\left( {\frac{1}{2}} \right) = \sqrt 2 $$    and $$\int_0^1 {f\left( x \right)dx = \frac{{2A}}{\pi },} $$     then what is the value of $$B\,?$$

A $$\frac{2}{\pi }$$
B $$\frac{4}{\pi }$$
C $$0$$
D $$1$$
Answer :   $$0$$

37. Let $$f:R \to R$$   and $$g:R \to R$$   be continuous functions. Then the value of the integral $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} \left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx$$        is-

A $$\pi $$
B $$1$$
C $$-1$$
D $$0$$
Answer :   $$0$$

38. Let $$f:{\bf{R}} \to {\bf{R}}$$   and $$g:{\bf{R}} \to {\bf{R}}$$   be continuous functions. Then the value of $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left\{ {f\left( x \right) + f\left( { - x} \right)} \right\}\left\{ {g\left( x \right) - g\left( { - x} \right)} \right\}} dx{\text{ is :}}$$

A $$f\left( x \right)g\left( x \right)$$
B $$f\left( x \right) + g\left( x \right)$$
C $$0$$
D none of these
Answer :   $$0$$

39. What is the value of $$\int\limits_0^1 {\left( {x - 1} \right){e^{ - x}}dx\,?} $$

A $$0$$
B $$e$$
C $$\frac{1}{e}$$
D $$\frac{{ - 1}}{e}$$
Answer :   $$\frac{{ - 1}}{e}$$

40. Let $$f\left( x \right)$$  be a function satisfying $$f'\left( x \right) = f\left( x \right)$$    with $$f\left( 0 \right) = 1$$   and $$g\left( x \right)$$  be a function that satisfies $$f\left( x \right) + g\left( x \right) = {x^2}.$$     Then the value of the integral $$\int\limits_0^1 {f\left( x \right)\,g\left( x \right)dx,} $$    is-

A $$e + \frac{{{e^2}}}{2} + \frac{5}{2}$$
B $$e - \frac{{{e^2}}}{2} - \frac{5}{2}$$
C $$e + \frac{{{e^2}}}{2} - \frac{3}{2}$$
D $$e - \frac{{{e^2}}}{2} - \frac{3}{2}$$
Answer :   $$e - \frac{{{e^2}}}{2} - \frac{3}{2}$$