43.
Let $$f:\left[ { - 1,\,2} \right] \to \left[ {0,\,\infty } \right)$$ be a continuous function such that $$f\left( x \right) = f\left( {1 - x} \right)$$ for all $$x\, \in \,\left[ { - 1,\,2} \right]$$
Let $${R_1} = \int\limits_{ - 1}^2 {x\,f\left( x \right)dx,} $$ and $${R_2}$$ be the area of the region bounded by $$y = f\left( x \right),\,\,x = - 1,\,\,x = 2$$ and the $$x$$-axis.
Then-
44.
If $$f\left( x \right)$$ satisfies the conditions of Rolle’s theorem in [1, 2] then $$\int_1^2 {f'\left( x \right)} dx$$ is equal to :
A
1
B
3
C
0
D
none of these
Answer :
0
As $$f\left( x \right)$$ satisfies the conditions of Rolle’s theorem in [1, 2], $$f\left( x \right)$$ is continuous in the interval and $$f\left( 1 \right) = f\left( 2 \right).$$
$$\therefore \int_1^2 {f'\left( x \right)} dx = \left[ {f\left( x \right)} \right]_1^2 = f\left( 2 \right) - f\left( 1 \right) = 0$$
45.
If $$f\left( {\frac{1}{x}} \right) + {x^2}f\left( x \right) = 0,\,x > 0,$$ and $$I = \int_{\frac{1}{x}}^x {f\left( z \right)dz,\,\frac{1}{2} \leqslant x \leqslant 2,} $$ then $$I$$ is :
A
$$f\left( 2 \right) - f\left( {\frac{1}{2}} \right)$$
B
$$f\left( {\frac{1}{2}} \right) - f\left( 2 \right)$$
47.
Let $$\left( {a,\,b} \right)$$ and $$\left( {\lambda ,\,\mu } \right)$$ be two points on the curve $$y = f\left( x \right).$$ If the slope of the tangent to the curve at $$\left( {x,\,y} \right)$$ be $$\phi \left( x \right)$$ then $$\int_a^\lambda {\phi \left( x \right)} \,dx$$ is :
A
$$\lambda - a$$
B
$$\mu - b$$
C
$$\lambda + \mu - a - b$$
D
none of these
Answer :
$$\mu - b$$
$$\eqalign{
& {\text{Here}}\,\,f'\left( x \right) = \phi \left( x \right) \cr
& {\text{So}},\,\,\int_a^\lambda {\phi \left( x \right)dx = \int_a^\lambda {f'\left( x \right)dx} } = \left[ {f\left( x \right)} \right]_a^\lambda = f\left( \lambda \right) - f\left( a \right) \cr
& {\text{But}}\,\,b = f\left( a \right),\,\,\mu = f\left( \lambda \right).\,\,{\text{So}},\,\,\int_a^\lambda {\phi \left( x \right)dx = \mu - } b \cr} $$
50.
Let $$f:R \to R$$ is differentiable function and $$f\left( 1 \right) = 4,$$ then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_0^{f\left( x \right)} {\frac{{2t\,dt}}{{x - 1}}} $$ is :