Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

41. The value of the integral $$\int_{ - 1}^3 {\left( {\left| x \right| + \left| {x - 1} \right|} \right)dx} $$     is :

A $$4$$
B $$9$$
C $$2$$
D $$\frac{9}{2}$$
Answer :   $$9$$

42. The value of $$\int_0^\pi {{{\sec }^2}x\,dx} $$    is :

A $$0$$
B $$2$$
C $$1$$
D none of these
Answer :   none of these

43. Let $$f:\left[ { - 1,\,2} \right] \to \left[ {0,\,\infty } \right)$$     be a continuous function such that $$f\left( x \right) = f\left( {1 - x} \right)$$    for all $$x\, \in \,\left[ { - 1,\,2} \right]$$
Let $${R_1} = \int\limits_{ - 1}^2 {x\,f\left( x \right)dx,} $$      and $${R_2}$$  be the area of the region bounded by $$y = f\left( x \right),\,\,x = - 1,\,\,x = 2$$      and the $$x$$-axis.
Then-

A $${R_1} = 2{R_2}$$
B $${R_1} = 3{R_2}$$
C $$2{R_1} = {R_2}$$
D $$3{R_1} = {R_2}$$
Answer :   $$2{R_1} = {R_2}$$

44. If $$f\left( x \right)$$  satisfies the conditions of Rolle’s theorem in [1, 2] then $$\int_1^2 {f'\left( x \right)} dx$$   is equal to :

A 1
B 3
C 0
D none of these
Answer :   0

45. If $$f\left( {\frac{1}{x}} \right) + {x^2}f\left( x \right) = 0,\,x > 0,$$       and $$I = \int_{\frac{1}{x}}^x {f\left( z \right)dz,\,\frac{1}{2} \leqslant x \leqslant 2,} $$       then $$I$$ is :

A $$f\left( 2 \right) - f\left( {\frac{1}{2}} \right)$$
B $$f\left( {\frac{1}{2}} \right) - f\left( 2 \right)$$
C 0
D none of these
Answer :   0

46. Let $$f:\left( {0,\,\infty } \right) \to R$$    and $$F\left( x \right) = \int\limits_0^x {f\left( t \right)dt} .$$    If $$F\left( {{x^2}} \right) = {x^2}\left( {1 + x} \right),$$     then $$f\left( 4 \right)$$  equals :

A $$\frac{5}{4}$$
B $$7$$
C $$4$$
D $$2$$
Answer :   $$4$$

47. Let $$\left( {a,\,b} \right)$$  and $$\left( {\lambda ,\,\mu } \right)$$  be two points on the curve $$y = f\left( x \right).$$   If the slope of the tangent to the curve at $$\left( {x,\,y} \right)$$ be $$\phi \left( x \right)$$  then $$\int_a^\lambda {\phi \left( x \right)} \,dx$$   is :

A $$\lambda - a$$
B $$\mu - b$$
C $$\lambda + \mu - a - b$$
D none of these
Answer :   $$\mu - b$$

48. $$\int_0^{10\pi } {\left| {\sin \,x\,} \right|dx} $$    is-

A $$20$$
B $$8$$
C $$10$$
D $$18$$
Answer :   $$20$$

49. The value of $$\int_{\frac{{{\pi ^3}}}{{27}}}^{\frac{{{\pi ^3}}}{8}} {\sin \,x\,dt,} $$    where $$t = {x^3},$$   is :

A $$\frac{{{\pi ^2}}}{6} + \left( {3 - \sqrt 3 } \right)\pi - 3$$
B $$\cos \frac{{{\pi ^3}}}{{27}} - \cos \frac{{{\pi ^3}}}{8}$$
C $$\frac{{{\pi ^2}}}{6}$$
D none of these
Answer :   $$\frac{{{\pi ^2}}}{6} + \left( {3 - \sqrt 3 } \right)\pi - 3$$

50. Let $$f:R \to R$$   is differentiable function and $$f\left( 1 \right) = 4,$$   then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_0^{f\left( x \right)} {\frac{{2t\,dt}}{{x - 1}}} $$   is :

A $$8f'\left( 1 \right)$$
B $$4f'\left( 1 \right)$$
C $$2f'\left( 1 \right)$$
D $$f'\left( 1 \right)$$
Answer :   $$8f'\left( 1 \right)$$