Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

81. The value of $$\int\limits_0^1 {\frac{{8\log \left( {1 + x} \right)}}{{1 + {x^2}}}} dx,$$    is-

A $$\frac{\pi }{8}\log \,2$$
B $$\frac{\pi }{2}\log \,2$$
C $$\log\,2$$
D $$\pi \,\log \,2$$
Answer :   $$\pi \,\log \,2$$

82. For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A $$\pi $$
B $$1$$
C $$0$$
D none of these
Answer :   $$0$$

83. The function $$f\left( x \right) = \int\limits_{ - 1}^x {t\left( {{e^t} - 1} \right)\left( {t - 1} \right){{\left( {t - 2} \right)}^3}{{\left( {t - 3} \right)}^5}dt} $$         has a local minimum at $$x = ?$$

A 0
B 1, 3
C 2
D None of these
Answer :   1, 3

84. $$\mathop {Lim}\limits_{n \to \infty } \sum\limits_{r = 1}^n {\frac{1}{n}{e^{\frac{r}{n}}}} $$   is-

A $$e + 1$$
B $$e - 1$$
C $$1 - e$$
D $$e$$
Answer :   $$e - 1$$

85. The value of $$\int_0^\pi {\ln \left( {1 + \cos \,x} \right)} dx$$     is :

A $$\frac{\pi }{2}\log \,2$$
B $$\pi \,\log \,2$$
C $$ - \pi \,\log \,2$$
D $$0$$
Answer :   $$ - \pi \,\log \,2$$

86. The value of $$I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\left( {\sin \,x + \cos \,x} \right)}^2}}}{{\sqrt {1 + \sin \,2x} }}dx} ,$$      is-

A $$3$$
B $$1$$
C $$2$$
D $$0$$
Answer :   $$2$$

87. The value of the integral $$I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} $$     is-

A $$\frac{1}{{n + 1}} + \frac{1}{{n + 2}}$$
B $$\frac{1}{{n + 1}}$$
C $$\frac{1}{{n + 2}}$$
D $$\frac{1}{{n + 1}} - \frac{1}{{n + 2}}$$
Answer :   $$\frac{1}{{n + 1}} - \frac{1}{{n + 2}}$$

88. $$\mathop {{\text{Lim}}}\limits_{n \to \infty } {\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\}^{\frac{1}{n}}},$$     where $$k \ne 0$$  is a constant and $$n\, \in \,{\bf{N}}$$  is equal to :

A $$ke$$
B $${k^{ - 1}}e$$
C $$k{e^{ - 1}}$$
D $${k^{ - 1}}{e^{ - 1}}$$
Answer :   $${k^{ - 1}}{e^{ - 1}}$$

89. The value of the integral $$\int\limits_{{e^{ - 1}}}^{{e^2}} {\left| {\frac{{{{\log }_e}x}}{x}} \right|dx} ,$$   is:

A $$\frac{3}{2}$$
B $$\frac{5}{2}$$
C $$3$$
D $$5$$
Answer :   $$\frac{5}{2}$$

90. $$\int_0^2 {\sqrt {\frac{{2 + x}}{{2 - x}}} dx} $$    is equal to :

A $$\pi + 1$$
B $$1 + \frac{\pi }{2}$$
C $$\pi + \frac{3}{2}$$
D none of these
Answer :   none of these